Download presentation
Presentation is loading. Please wait.
1
Bayesian Inference Will Penny
Wellcome Department of Imaging Neuroscience, University College London, UK SPM Course, London, May 2004
2
Bayesian Inference Gaussians Posterior Probability Maps (PPMs)
Hemodynamic Models (HDMs) Comparing models (DCMs)
3
One parameter Likelihood and Prior Posterior Likelihood Prior
Relative Precision Weighting
4
Two parameters
5
Posterior Probability Maps - PPMs
Bayesian parameter estimation Least squares parameter estimation No Priors Shrinkage priors
6
Prior Prior: mi 1/a=1
7
Data Likelihood: yi i=1..V=20 voxels n=1..N=10 scans
8
Least Squares Estimates
9
Least Squares Estimates
Error=7.10
10
Bayesian Estimates E-Step: M-Step: Iteration 1 Error=7.10
11
Bayesian Estimates E-Step: M-Step: Iteration 2 Error=2.95
12
Bayesian Estimates E-Step: M-Step: Iteration 3 Error=2.35
13
SPMs and PPMs PPMs: Show activations of a given size
SPMs: show voxels with non-zero activations
14
Hemodynamic Models - HDMs
Photic Motion Attention fMRI study of attention to visual motion
15
PPMs Advantages Disadvantages Use of shrinkage One can infer a cause
priors over voxels is computationally demanding Utility of Bayesian approach is yet to be established One can infer a cause DID NOT elicit a response SPMs conflate effect-size and effect-variability
16
Comparing Dynamic Causal Models
V1 V5 SPC Motion Photic Attention 0.86 0.56 -0.02 1.42 0.55 0.75 0.89 V1 V5 SPC Motion Photic Attention 0.96 0.39 0.06 0.58 m=3 V1 V5 SPC Motion Photic Attention 0.85 0.57 -0.02 1.36 0.70 0.84 0.23 Bayesian Evidence: Bayes factors:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.