Download presentation
Presentation is loading. Please wait.
Published byByron Kristopher Andrews Modified over 6 years ago
1
E > 100 keV activities at DTU Space ½ MeV Telescope Design
Carl Budtz-Jørgensen et. al Multilayer Mirrors: NuSTAR CZT Detectors: ASIM
2
TEM image of 1.5 nm-period ML
8
Achieving High Position Resolution Using CZT Drift Strip Detectors
I. Kuvvetli1, C. B. Jørgensen1, A. Zappettini2, G. Benassi2, E. Caroli3, L. Marchini2, N. Zambelli2, J. B. Stephen3, N. Auricchio3 1)DTU Space, Technical University of Denmark, Copenhagen, Denmark 2)IMEM-CNR, Parma, Italy 3)INAF/IASF, Bologna, Italy
9
3D CZT Detectors General requirements for the high energy astrophysics instrumentation sensors are : high efficiency, good spatial resolution, good spectroscopic resolution ESA development project:“3D CZT High Resolution Detectors /11/NL/CBi”. This prototype detector technology is based on CZT Drift Strip Detector. Astrophysical applications: Focal instrument for Laue Lens (uni. of Ferrara) Focal Instrument for High Energy (up to 500keV) focussing optics (ESA funded development project on-going at DTU) Polarimeter ( keV) (INAF Bologna) Compton Telescope (Homeland Security)
10
CZT Drift Strip Detector
1D CZT drift strip detectors 0.70% FWHM @ 356 keV X Y CZT DSD design: 8 drift strips and one collecting anode readout strip All strips are 10 mm long, 100 um wide, 100 um gab Drift detector cell pitch (between A and B) s 1.6 mm CZT crystal: 10 mm ×10 mm ×2.5 mm Small anodes better energy resolution at high energies Drift strips screening the anodes from holes and provides effective large sensitive area by focusing electrons on anodes Cathode/anode signal provides DOI The energy resolution can further be enhanced using DOI The DTU Space CZT drift detector Van Pamalen, Budtz-Jørgensen NIM A 441(1998), 197
11
TEST AT ESRF 100-600 keV monochromatic beam. 50x50 µm
3DCZT prototype (CZT detector: 20 mm x 20 mm x 5 mm).
12
ESRF 400 keV XY Scanning 400 µm 400 µm
13
ESRF 400 keV Z Scanning Y (mm) Z-scan (mm)
14
Polarization 4 mm CZT ø scatter detector. Efficiency: 19%@ 511 keV 50
40 2550 40
15
Challenge at DTU Space Design of a soft gamma ray focussing telescope using these technologies 0.1 to 0.6 MeV Polarimetry Your input and ideas are most welcome
16
CZT Drift Strip Detector
1D CZT drift strip detectors 0.70% FWHM @ 356 keV X Y CZT DSD design: 8 drift strips and one collecting anode readout strip All strips are 10 mm long, 100 um wide, 100 um gab Drift detector cell pitch (between A and B) s 1.6 mm CZT crystal: 10 mm ×10 mm ×2.5 mm Small anodes better energy resolution at high energies Drift strips screening the anodes from holes and provides effective large sensitive area by focusing electrons on anodes Cathode/anode signal provides DOI The energy resolution can further be enhanced using DOI The DTU Space CZT drift detector Van Pamalen, Budtz-Jørgensen NIM A 441(1998), 197
17
Measured 1D Position Resolution
The measured position resolutions depend on non-correlated electronic noise and the size and shape of the charge distribution generated by the photo and Compton electrons. The charge distributions generated by photo or Compton electrons were calculated using the Casino Monte Carlo code The calculated position resolutions were obtained without adjustable parameters and describe the measurements quite well.
18
2D Position Capability Y X 57Co source 1us shaping
Planar bias:Vp=-400V Drift biases: V1=-60V V2=-120V Beam size= Ø350um collimator X-step= 200 um Y-step= 400 um
19
n d i W/B4C Multilayer B4C W Γ B4C = 0.6 for all bilayers
SiOx d i n Γ B4C = 0.6 for all bilayers e.g. d5 = 12 nm B4C layer = (0.6 x 12) nm W layer = (0.4 x 12) nm Desiree Della Monica Ferreira Postdoc, DTU Space - Astrophysics Multilayer Coatings for ATHENA
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.