Presentation is loading. Please wait.

Presentation is loading. Please wait.

Analogy Between Engineering Systems

Similar presentations


Presentation on theme: "Analogy Between Engineering Systems"— Presentation transcript:

1 Analogy Between Engineering Systems
x Displacement (m) Velocity (m/s) Acceleration (m/s2) m Mass (kg) k Spring Constant (N/m) c Damping Constant (Ns/m) f Force (N) θ Angular Dispalement (rad) Angular Velocity (rad/s) Angular Acceleration (rad/s2) IG Mass moment of inertia (kg-m2) Kr Rotational spring constant (Nm/rad) Cr Rotational damping constant Nm/(rad/s) M Moment (Nm) q Charge (Coulomb) Current (Amper) L Inductance (Henry) 1/C C:Capacitance (Farad) R Resistance (Ohm) V Voltage (Volt) Vf Volume (m3) Qf Flow Rate (m3/s) If Fluid Inertance (kg/m4) 1/Cf Cf:Fluid Capacitance Rf Flow Resistance P Pressure (N/m2) Ht Heat Energy (Joule) Qt Heat Flow Rate (J/s) 1/Ct Ct:Thermal Capacitance Rt Thermal Resistance T Temperature (oC)

2 Fluid Inertance in a Pipe:
Vf Volume (m3) Qf Flow Rate (m3/s) If Fluid Inertia (kg/m4) 1/Cf Cf:Flow Capacitance Rf Flow Resistance P Pressure (N/m2) D.Rowell & D.N.Wormley, System Dynamics:An Introduction, Prentice Hall, 1997 Fluid Inertance in a Pipe: If:Fluid inertia, ρ: Density (kg/m3), L: Length (m), A: Cross section area of the pipe (m2) Fluid Capacitance: Cf: Fluid capacitance, At:Cross section are of the tank, g=9.81 m/s2

3 Resistance in a Laminar flow:
Rf:Resistance, µ:Viscosity, L:Pipe length, d:Pipe diameter Reynold’s Number= In a laminar flow, Reynold’s Number <2000 Equivalent Electric Circuits of Flow Systems: R L C Fluid inertia,L

4 Equivalent Electric Circuits of Flow Systems: Flow Elec. pn Vn
1 pk1 Qk1 pa Flow System: 2 3 4 Q3 A 5 Q5 Rn Rn In Ln Qn Cn Cn h C2 R3 L3 R4 L4 - + V4 A Equivalent Electric Circuit: R2 L2 C1 R5 L5 - Va + Vk1 R1 L1

5 Ct:Thermal Capacitance
ANOLOGY BETWEEN THERMAL AND ELECTRICAL SYSTEMS Ht Heat Energy (Joule) Qt Heat Flow Rate (J/s) 1/Ct Ct:Thermal Capacitance Rt Thermal Resistance T Temperature (oC) D.Rowell & D.N.Wormley, System Dynamics:An Introduction, Prentice Hall, 1997 Thermal capacitance: Ct=mCp Ct: Thermal Capacitance, Cp: Specific Heat, m: Mass Thermal resistance in heat conduction: Rt:Resistance, ρc:Thermal conductivity, A:Cross section area, L:Length

6 Q1a Ta Input Ta 1 Q1a Qk1 Q12 2 Q2a o Input 1 Qk1 Q12 2 o C1 C1 R1a
Thermal isolation 1 o Qk1 2 Ta Q1a Q12 Input (Outdoor temperature) 1 o Qk1 2 Ta Q1a Q12 Input (Outdoor temperature) Q2a R12 R1a C1 Va C2 R12 R1a C1 Va C2 R2a

7 Equivalent Electric Circuit
Thermal System: Thermal Electrical Qn Q2a Q1a Ta Rn Rn 2 o Qk2 1 o Qk1 Cn Cn Tn Vn TB QB2 TB is a constant- temperature room. Q1B QBa Qk1, Qk2, TB Inputs: VB Equivalent Electric Circuit - + VB RB2 RBa R1B R1a C1 Va R2a C2

8 Examples: Fluid: Mechanical: R L C Thermal:


Download ppt "Analogy Between Engineering Systems"

Similar presentations


Ads by Google