Download presentation
Presentation is loading. Please wait.
Published byBenjamin Walker Modified over 6 years ago
1
Generating Permutations & Combinations: Selected Exercises
2
10 Develop an algorithm for generating the r-permutations of a set of n elements.
3
10 Solution We have algorithms to:
Generate the next permutation in lexicographic order Generate the next r-combination in lexicographic order. From these, we create an algorithm to generate the r-permutations of a set with n elements: Generate each r-combination, using algorithm B) For each r-combination Generate the (r!) r-permutations, using algorithm A)
4
10 Solution continued // pseudo code of an iterator for r-permutations. for ( Iterator<Set> ci = set.combinationIt(n,r); ci.hasNext(); ) { Set s = ci.next(); for( Iterator pi = s.permutationIt(r), pi.hasNext(); ) int[] permutation = (int[]) pi.next(); }
5
10 continue On the next slide, I put a crude Java “Iterator” for generating r-combinations based on the algorithm in the textbook. (The previous slide does not use this.)
6
// Assumption: 0 <= r <= n
public class CombinationIterator { private int n; // the size of the set private int r; // the size of the combination private int[] combination; private boolean hasNext = true; private boolean isFirst = true; public CombinationIterator( int n, int r ) { this.n = n; this.r = r; combination = new int[r]; for ( int i = 0; i < combination.length; i++ ) combination[i] = i + 1; } public boolean hasNext() { return hasNext; }
7
public int[] next() { if ( isFirst ) { isFirst = false; if ( r == 0 || n <= r || n == 0 ) hasNext = false; return combination; } int i = combination.length - 1; // find 1st submaximal element from the right for ( ; combination[i] == n - r + i + 1; i--); combination[i] = combination[i] + 1; // increase that element // minimize subsequent elements for ( int j = i + 1; j < combination.length; j++ ) combination[j] = combination[i] + j - i; // set hasNext for ( ; i >= 0 && combination[i] == n - r + i + 1; i--); if ( i < 0 ) hasNext = false;
8
Exercise Complete an “Iterator” class for permutations:
class PermutationIterator { public PermutationIterator( int n ) boolean hasNext() int[] next() void remove() { /* null body */ } }
9
Characters . ≥ ≡ ~ ┌ ┐ └ ┘ ≈ Ω Θ
. ≥ ≡ ~ ┌ ┐ └ ┘ ≈ Ω Θ Σ ¢
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.