Download presentation
Presentation is loading. Please wait.
1
CHAPTER 2 RevIEw precalculus
3
y = (x+2)2
5
y = (x-2)2 -1
7
y = -(x+1)2 + 3
8
4) The number of horsepower H required to overcome wind drag on a certain car is approximated by H(s) = 0.002s s , 0 < s < 100 where s is the speed of the car in miles per hour. a) Use a graphing calculator to graph. b) Estimate the maximum speed of the car if the power required to overcome wind drag is not to exceed 10 horsepower. Round your answer to the nearest tenth.
9
4) The number of horsepower H required to overcome wind drag on a certain car is approximated by H(s) = 0.002s s , 0 < s < 100 where s is the speed of the car in miles per hour. a) Use a graphing calculator to graph. b) Estimate the maximum speed of the car if the power required to overcome wind drag is not to exceed 10 horsepower. Round your answer to the nearest tenth.
10
4) The number of horsepower H required to overcome wind drag on a certain car is approximated by H(s) = 0.002s s , 0 < s < 100 where s is the speed of the car in miles per hour. a) Use a graphing calculator to graph. b) Estimate the maximum speed of the car if the power required to overcome wind drag is not to exceed 10 horsepower. Round your answer to the nearest tenth.
11
4) The number of horsepower H required to overcome wind drag on a certain car is approximated by H(s) = 0.002s s , 0 < s < 100 where s is the speed of the car in miles per hour. a) Use a graphing calculator to graph. b) Estimate the maximum speed of the car if the power required to overcome wind drag is not to exceed 10 horsepower. Round your answer to the nearest tenth. 59.4 MPH
12
5) f(x) = x2 - 16
13
5) f(x) = x2 - 16 = (x )(x )
14
5) f(x) = x2 - 16 = (x - 4)(x + 4)
15
5) f(x) = x2 - 16 = (x - 4)(x + 4) zeros: 4, -4
16
6) f(x) = x2 + 12x + 36
17
6) f(x) = x2 + 12x + 36 = (x )(x )
18
6) f(x) = x2 + 12x + 36 = (x + 6)(x + 6)
19
6) f(x) = x2 + 12x + 36 = (x + 6)(x + 6) zeros: -6, -6
20
7) f(x) = 2x2 - 14x + 24
21
7) f(x) = 2x2 - 14x + 24 = 2( )
22
7) f(x) = 2x2 - 14x + 24 = 2(x2 - 7x + 12)
23
7) f(x) = 2x2 - 14x + 24 = 2(x2 - 7x + 12) = 2(x )(x )
24
7) f(x) = 2x2 - 14x + 24 = 2(x2 - 7x + 12) = 2(x - 4)(x - 3)
25
7) f(x) = 2x2 - 14x + 24 = 2(x2 - 7x + 12) = 2(x - 4)(x - 3) zeros: 4, 3
26
8) f(x) = x4 - x3 - 20x2
27
8) f(x) = x4 - x3 - 20x2 = x2( )
28
8) f(x) = x4 - x3 - 20x2 = x2(x2 - x - 20x)
29
8) f(x) = x4 - x3 - 20x2 = x2(x2 - x - 20x) = x2(x )(x )
30
8) f(x) = x4 - x3 - 20x2 = x2(x2 - x - 20x) = x2(x + 4)(x - 5)
31
8) f(x) = x4 - x3 - 20x2 = x2(x2 - x - 20x) = x2(x + 4)(x - 5) = (x)(x)(x + 4)(x - 5)
32
8) f(x) = x4 - x3 - 20x2 = x2(x2 - x - 20x) = x2(x + 4)(x - 5) = (x)(x)(x + 4)(x - 5) zeros: 0, 0, -4, 5
33
Find a polynomial with the following zeros.
9) -7, 2
34
Find a polynomial with the following zeros.
9) -7, 2 (x - -7)(x - 2)
35
Find a polynomial with the following zeros.
9) -7, 2 (x - -7)(x - 2) (x + 7)(x - 2)
36
Find a polynomial with the following zeros.
9) -7, 2 (x - -7)(x - 2) (x + 7)(x - 2) x2 - 2x + 7x - 14
37
Find a polynomial with the following zeros.
9) -7, 2 (x - -7)(x - 2) (x + 7)(x - 2) x2 - 2x + 7x - 14 x2 + 5x - 14
38
10) 0, 4
39
10) 0, 4 (x - 0)(x - 4)
40
10) 0, 4 (x - 0)(x - 4) x(x - 4)
41
10) 0, 4 (x - 0)(x - 4) x(x - 4) x2 - 4x
42
What does the graph of each function look like? (circle two for each)
11) f(x) = -x2 + 6x + 9 rises to the left rises to the right falls to the left falls to the right
43
What does the graph of each function look like? (circle two for each)
11) f(x) = -x2 + 6x + 9 rises to the left rises to the right falls to the left falls to the right
44
What does the graph of each function look like? (circle two for each)
11) f(x) = -x2 + 6x + 9 rises to the left rises to the right falls to the left falls to the right
45
12) f(x) = 0.5x3 + 2x rises to the left rises to the right
falls to the left falls to the right
46
12) f(x) = 0.5x3 + 2x rises to the left rises to the right
falls to the left falls to the right
47
12) f(x) = 0.5x3 + 2x rises to the left rises to the right
falls to the left falls to the right
48
13) f(x) = 6(x4 + 3x2 + 2) rises to the left rises to the right
falls to the left falls to the right
49
13) f(x) = 6(x4 + 3x2 + 2) rises to the left rises to the right
falls to the left falls to the right
50
13) f(x) = 6(x4 + 3x2 + 2) rises to the left rises to the right
falls to the left falls to the right
51
14) f(x) = -x5 - 7x + 10 rises to the left rises to the right
falls to the left falls to the right
52
14) f(x) = -x5 - 7x + 10 rises to the left rises to the right
falls to the left falls to the right
53
14) f(x) = -x5 - 7x + 10 rises to the left rises to the right
falls to the left falls to the right
54
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3)
55
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3) 2x x3 - 3x2 - 50x + 75
56
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3) x2 2x x3 - 3x2 - 50x + 75
57
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3) x2 2x x3 - 3x2 - 50x + 75 2x3 - 3x2
58
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3) x2 2x x3 - 3x2 - 50x + 75 2x3 - 3x2
59
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3) x2 2x x3 - 3x2 - 50x + 75 2x3 - 3x2 x + 75
60
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3) x 2x x3 - 3x2 - 50x + 75 2x3 - 3x2 x + 75
61
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3) x 2x x3 - 3x2 - 50x + 75 2x3 - 3x2 x + 75 - 50x + 75
62
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3) x 2x x3 - 3x2 - 50x + 75 2x3 - 3x2 x + 75 - 50x + 75
63
Use long division to simplify.
15) (2x3 - 3x2 - 50x + 75) / (2x - 3) x 2x x3 - 3x2 - 50x + 75 2x3 - 3x2 x + 75 - 50x + 75
64
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5)
65
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5)
66
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5)
67
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5) 3
68
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5) 15 3
69
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5) 15
70
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5)
71
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5)
72
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5)
73
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5)
74
Use synthetic division to simplify.
16) (3x3 - 17x2 + 15x - 25) / (x - 5) 3x2 - 2x + 5
75
17) (2x3 + 14x2 - 20x + 7) / (x + 6)
76
17) (2x3 + 14x2 - 20x + 7) / (x + 6)
77
17) (2x3 + 14x2 - 20x + 7) / (x + 6)
78
17) (2x3 + 14x2 - 20x + 7) / (x + 6)
79
17) (2x3 + 14x2 - 20x + 7) / (x + 6) 2x2 + 2x x+6
80
Write in completely factored form. Then find all zeros.
18) f(x) = x3 + 4x2 - 25x Hint: (x - 4) is a factor
81
Write in completely factored form. Then find all zeros.
18) f(x) = x3 + 4x2 - 25x Hint: (x - 4) is a factor
82
Write in completely factored form. Then find all zeros.
18) f(x) = x3 + 4x2 - 25x Hint: (x - 4) is a factor
83
Write in completely factored form. Then find all zeros.
18) f(x) = x3 + 4x2 - 25x Hint: (x - 4) is a factor
84
Write in completely factored form. Then find all zeros.
18) f(x) = x3 + 4x2 - 25x Hint: (x - 4) is a factor x2 + 8x + 7
85
Write in completely factored form. Then find all zeros.
18) f(x) = x3 + 4x2 - 25x Hint: (x - 4) is a factor x2 + 8x + 7 (x + 1)(x + 7)
86
Write in completely factored form. Then find all zeros.
18) f(x) = x3 + 4x2 - 25x Hint: (x - 4) is a factor x2 + 8x + 7 (x + 1)(x + 7) (x - 4)(x + 1)(x + 7)
87
Write in completely factored form. Then find all zeros.
18) f(x) = x3 + 4x2 - 25x Hint: (x - 4) is a factor x2 + 8x + 7 (x + 1)(x + 7) (x - 4)(x + 1)(x + 7) zeros: 4, ,
88
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
89
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
90
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
91
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
x3 - x2 - 10x - 8
92
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
x3 - x2 - 10x - 8
93
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
x3 - x2 - 10x - 8
94
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
x3 - x2 - 10x - 8
95
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
x3 - x2 - 10x - 8 x2 - 3x - 4
96
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
x3 - x2 - 10x - 8 x2 - 3x - 4 (x - 4)(x + 1)
97
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
x3 - x2 - 10x - 8 x2 - 3x - 4 (x - 4)(x + 1) (x - 4)(x + 1)(x + 2)(x - 3)
98
19) f(x) = x4 - 4x3 - 7x2 + 22x + 24 Hint: (x + 2) and (x - 3) are factors
x3 - x2 - 10x - 8 x2 - 3x - 4 (x - 4)(x + 1) (x - 4)(x + 1)(x + 2)(x - 3) zeros: 4, , ,
99
Write each complex number in standard form.
20) (3 + 2i) + (5 + i)
100
Write each complex number in standard form.
20) (3 + 2i) + (5 + i) 8 + 3i
101
21) (3 + 2i)(5 + i)
102
21) (3 + 2i)(5 + i) 15 + 3i + 10i + 2i2
103
21) (3 + 2i)(5 + i) 15 + 3i + 10i + 2i2 i + 2i2
104
21) (3 + 2i)(5 + i) 15 + 3i + 10i + 2i2 i + 2i2 i + 2(-1)
105
21) (3 + 2i)(5 + i) 15 + 3i + 10i + 2i2 i + 2i2 i + 2(-1) i
106
22) (3 + 2i) (5 + i)
107
22) (3 + 2i) * (5 - i) (5 + i) * (5 - i)
108
22) (3 + 2i) * (5 - i) = i + 10i - 2i2 (5 + i) * (5 - i) = i - 5i - i2
109
22) (3 + 2i) * (5 - i) = 15 - 3i + 10i - 2i2 = 15 + 7i -2(-1)
110
22) (3 + 2i) * (5 - i) = 15 - 3i + 10i - 2i2 = 15 + 7i -2(-1)
111
22) (3 + 2i) * (5 - i) = 15 - 3i + 10i - 2i2 = 15 + 7i -2(-1) =
26
112
22) (3 + 2i) * (5 - i) = 15 - 3i + 10i - 2i2 = 15 + 7i -2(-1) =
26 i
113
Find all zeros. Then rewrite the function in completely factored form.
23) f(x) = x2 - 10x + 6
114
Find all zeros. Then rewrite the function in completely factored form.
23) f(x) = x2 - 10x + 6 A = 1 B = -10 C = 6
115
Find all zeros. Then rewrite the function in completely factored form.
23) f(x) = x2 - 10x + 6 A = 1 B = -10 C = 6
116
Find all zeros. Then rewrite the function in completely factored form.
23) f(x) = x2 - 10x + 6 A = 1 B = -10 C = 6
117
Find all zeros. Then rewrite the function in completely factored form.
23) f(x) = x2 - 10x + 6 A = 1 B = -10 C = 6
118
Find all zeros. Then rewrite the function in completely factored form.
23) f(x) = x2 - 10x + 6 A = 1 B = -10 C = 6
119
Find all zeros. Then rewrite the function in completely factored form.
23) f(x) = x2 - 10x + 6 A = 1 B = -10 C = 6 =
120
Find all zeros. Then rewrite the function in completely factored form.
23) f(x) = x2 - 10x + 6 A = 1 B = -10 C = 6 =
121
24) f(x) = x2 + 2x + 4
122
24) f(x) = x2 + 2x + 4 Quadratic Formula
123
24) f(x) = x2 + 2x + 4 Quadratic Formula > Magic Happens
124
24) f(x) = x2 + 2x + 4 Quadratic Formula > Magic Happens >
125
24) f(x) = x2 + 2x + 4 Quadratic Formula > Magic Happens >
126
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4
127
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4
128
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4 3x3 - 7x2 + 14x - 4
129
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4 3x3 - 7x2 + 14x - 4
130
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4 3x3 - 7x2 + 14x - 4 3x3 - 7x2 + 14x - 4
131
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4 3x3 - 7x2 + 14x - 4 / 3x3 - 7x2 + 14x x2 - 6x + 12
132
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4 3x3 - 7x2 + 14x - 4 / 3x3 - 7x2 + 14x x2 - 6x + 12 Quadratic Formula
133
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4 3x3 - 7x2 + 14x - 4 / 3x3 - 7x2 + 14x x2 - 6x + 12 Quadratic Formula > Magic Happens
134
Quadratic Formula -------> Magic Happens ------->
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4 3x3 - 7x2 + 14x - 4 / 3x3 - 7x2 + 14x x2 - 6x + 12 Quadratic Formula > Magic Happens > x = x =
135
Quadratic Formula -------> Magic Happens ------->
25) f(x) = 3x4 - 4x3 + 7x2 + 10x - 4 3x3 - 7x2 + 14x - 4 / 3x3 - 7x2 + 14x x2 - 6x + 12 Quadratic Formula > Magic Happens > x = x =
136
26) f(x) = x3 - 4x2 + 6x - 4
137
26) f(x) = x3 - 4x2 + 6x - 4
138
26) f(x) = x3 - 4x2 + 6x - 4 2, ____, ____
139
26) f(x) = x3 - 4x2 + 6x - 4 2, ____, ____ Synthetic Division
140
26) f(x) = x3 - 4x2 + 6x - 4 2, ____, ____ Synthetic Division > x2 - 2x + 2
141
26) f(x) = x3 - 4x2 + 6x - 4 2, ____, ____ Synthetic Division > x2 - 2x > Quadratic Formula
142
26) f(x) = x3 - 4x2 + 6x - 4 2, 1 + i, 1 - i Synthetic Division > x2 - 2x > Quadratic Formula
143
26) f(x) = x3 - 4x2 + 6x - 4 2, 1 + i, 1 - i (x - 2)(x i)(x i) Synthetic Division > x2 - 2x > Quadratic Formula
144
Find a polynomial with the following zeros.
27) 2 + 3i, 2 - 3i (x - (2+3i))(x - (2 - 3i)) (x i)(x i) x2 - 2x + 3ix
145
Find a polynomial with the following zeros.
27) 2 + 3i, 2 - 3i (x - (2+3i))(x - (2 - 3i)) (x i)(x i) x2 - 2x + 3ix - 2x i
146
Find a polynomial with the following zeros.
27) 2 + 3i, 2 - 3i (x - (2+3i))(x - (2 - 3i)) (x i)(x i) x2 - 2x + 3ix - 2x i - 3ix + 6i - 9i2
147
Find a polynomial with the following zeros.
27) 2 + 3i, 2 - 3i (x - (2+3i))(x - (2 - 3i)) (x i)(x i) x2 - 2x + 3ix - 2x i - 3ix + 6i - 9i2 x2 - 2x + 3ix - 2x i - 3ix + 6i - 9(-1)
148
Find a polynomial with the following zeros.
27) 2 + 3i, 2 - 3i (x - (2+3i))(x - (2 - 3i)) (x i)(x i) x2 - 2x + 3ix - 2x i - 3ix + 6i - 9i2 x2 - 2x + 3ix - 2x i - 3ix + 6i - 9(-1) x2 - 4x
149
Find a polynomial with the following zeros.
27) 2 + 3i, 2 - 3i (x - (2+3i))(x - (2 - 3i)) (x i)(x i) x2 - 2x + 3ix - 2x i - 3ix + 6i - 9i2 x2 - 2x + 3ix - 2x i - 3ix + 6i - 9(-1) x2 - 4x x2 - 4x + 13
150
28) 0, 3, 5i, -5i
151
28) 0, 3, 5i, -5i (x) (x-3) (x-5i) (x+5i)
152
28) 0, 3, 5i, -5i (x) (x-3) (x-5i) (x+5i) ( x2 - 3x ) (x2 + 5ix - 5ix - 25i2 )
153
28) 0, 3, 5i, -5i (x) (x-3) (x-5i) (x+5i) ( x2 - 3x ) (x2 + 5ix - 5ix - 25i2 ) ( x2 - 3x ) (x2 + 25)
154
28) 0, 3, 5i, -5i (x) (x-3) (x-5i) (x+5i) ( x2 - 3x ) (x2 + 5ix - 5ix - 25i2 ) ( x2 - 3x ) (x2 + 25) x4 + 25x2 - 3x3 - 75x
155
28) 0, 3, 5i, -5i (x) (x-3) (x-5i) (x+5i) ( x2 - 3x ) (x2 + 5ix - 5ix - 25i2 ) ( x2 - 3x ) (x2 + 25) x4 + 25x2 - 3x3 - 75x x4 - 3x3 + 25x2 - 75x
156
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 29)
157
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 29) HA: y = -1 VA: x = -3 Holes: none
158
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 30)
159
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 30) HA: y = 4 VA: x = 8 Holes: none
160
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 31)
161
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 31) HA: y = 0 VA: x = -3, x = 6 Holes: none
162
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 32)
163
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 32) HA: y = 0 VA: x = -1, x = 1 Holes: none
164
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 33)
165
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 33) HA: y = 3 VA: none Holes: none
166
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 34) hint: this one has a hole
167
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 34) hint: this one has a hole HA: y = 1 VA: x = -1 Holes: x = 1 (x - 4)(x - 1) (x + 1)(x - 1)
168
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 35) hint: this one has a hole
169
Find the horizontal asymptotes, vertical asymptotes, and holes
for each rational function. 35) hint: this one has a hole HA: y = 1 VA: x = -1.5 Holes: x = 3 (2x - 1)(x - 3) (2x + 3)(x - 3)
170
36). This table shows the amounts A (in dollars) spent per
36) This table shows the amounts A (in dollars) spent per person on the internet in the United States from 2000 to Use a graphing calculator to create a scatter plot of the data. Let t represent the year, with t = 0 corresponding to 2000. a) Calculate a quadratic regression line to fit the data. What is its equation? b) Based on your quadratic model, approximate how much was spent on each person in 2008. Year Amount, A (in hours) 2000 3492 2001 3540 2002 3606 2003 3663 2004 3757 2005 3809
171
36). This table shows the amounts A (in dollars) spent per
36) This table shows the amounts A (in dollars) spent per person on the internet in the United States from 2000 to Use a graphing calculator to create a scatter plot of the data. Let t represent the year, with t = 0 corresponding to 2000. a) Calculate a quadratic regression line to fit the data. What is its equation? f(x) = 2.36t t b) Based on your quadratic model, approximate how much was spent on each person in 2008. Year Amount, A (in hours) 2000 3492 2001 3540 2002 3606 2003 3663 2004 3757 2005 3809
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.