Download presentation
Presentation is loading. Please wait.
Published byMartha Oliver Modified over 6 years ago
1
The Debye-Waller factor Start w/ structure factor
Fhkl = fn exp (2πi r* rn) unit cell hkl So/ S/ (S -So)/ 2 |r*| = |s - so|/ = (2 sin )/ r* = (s - so)/ = ha* + kb* + lc* r = xa + yb + zc
2
For small rn exp (2πi r* rn) = 1 + 2πi r* rn + 1/2 (2πi r* rn)2 + … hkl The Debye-Waller factor Averaging over time exp (2πi r* rn) ≈ 1 - 2π2 |r* |2 <ux> = 1 - 8π2(sin /)2 <ux> hkl 2 exp (- 8π2(sin /)2 <ux>) = exp (-B(sin /)2) Debye-Waller factor 2 B = 8π2 <ux> 2
3
For anisotropic motion
exp {-(11h2 + 22k2 + 33l2 + 212hk + 213hl + 223kl)} exp {-1/4(B11h2a*2 + B22k2b*2 + B33l2c*2 + 2B12hk a*b* + 2B13hl a*c* + 2B23kl b*c*)} exp {-2π2(U11h2a*2 + U22k2b*2 + U33l2c*2 + 2U12hk a*b* + 2U13hl a*c* + 2U23kl b*c* The Debye-Waller factor = 2π2 Ua* B = 8π2 U
4
For anisotropic motion
exp {-(11h2 + 22k2 + 33l2 + 212hk + 213hl + 223kl)} exp {-1/4(B11h2a*2 + B22k2b*2 + B33l2c*2 + 2B12hk a*b* + 2B13hl a*c* + 2B23kl b*c*)} exp {-2π2(U11h2a*2 + U22k2b*2 + U33l2c*2 + 2U12hk a*b* + 2U13hl a*c* + 2U23kl b*c* The Debye-Waller factor Bii are lengths of thermal ellipsoid semi-major and semi-minor axes All Bs describe orientation of ellipsoids wrt lattice vectors
5
The Debye-Waller factor
Bii are lengths of thermal ellipsoid semi-major and semi-minor axes All Bs describe orientation of ellipsoids wrt lattice vectors Need: Bii > 0 Bii Bjj > Bij2 B11 B22 B33 + B122 B132 B232 > B11 B232 + B22B132 + B33 B122
6
Thermal diffuse scattering
(see extensive discussion in James: Optical Principles of the Diffraction of X-rays, chapter V) Following Egami & Billinge, p. 33: Define |Q| = 4π (sin )/ rn = rno + un n Then, scatt ampl due to displacement only is 1/<b> iQunbn exp (iQrno) un(rno) = 1/N1/2 uq exp (iqrno) q i/<b>N1/2 bnQuq exp (i(Q-q)rno) q,n
7
Thermal diffuse scattering
i/<b>N1/2 bnQuq exp (i(Q-q)rno) q,n Summing over all unit cells, and separating out Bragg peak scattering Idiffuse(Q) = |1/N bj exp (2πir*rjo)|2 |QuQ-2πr*|2 j
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.