Download presentation
Presentation is loading. Please wait.
Published byIsabel Bradford Modified over 6 years ago
1
Problem 7.161 120 mm It has been experimentally determined that the bending moment at point K of the frame shown is 300 N-m. Determine (a) the tension in rods AE and FD, (b) the corresponding internal forces at point J. B A 100 mm E J F 100 mm k 100 mm D C 280 mm
2
Solving Problems on Your Own
120 mm Problem 7.161 B A Solving Problems on Your Own 100 mm E It has been experimentally determined that the bending moment at point K of the frame shown is 300 N-m. Determine (a) the tension in rods AE and FD, (b) the corresponding internal forces at point J. J F 100 mm k 100 mm D C 280 mm 1. Cut the member at a point, and draw the free-body diagram of each of the two portions. 2. Select one of the two free-body diagrams and use it to write the equations of equilibrium.
3
120 mm Problem Solution B A Cut the member at a point, and draw the free-body diagram of each of the two portions. Tx 100 mm J T 100 mm Ty k A V MK = 300 N-m F D = 340 300 D = 160 A F 8 MK = 300 N-m T 15 17 V Ty k D 100 mm Tx 15 17 D Ty = T C 8 17 280 mm Tx = T
4
SMk = 0: 300 N-m - T(0.2 m) - T(0.12 m) = 0 T = 1500 N
120 mm Problem Solution 8 17 Tx = T B A Select one of the two free-body diagrams and use it to write the equations of equilibrium. 200 mm J 15 17 Ty = T k V MK = 300 N-m Free Body: ABK F D + 8 17 15 17 SMk = 0: N-m T(0.2 m) T(0.12 m) = 0 T = 1500 N
5
SMJ = 0: MJ - (705.88 N)(0.1 m) - (1323.53 N)(0.12 m) = 0
120 mm Problem Solution B A 8 17 Tx = (1500) = N 100 mm J 15 17 Ty = (1500) = N V MJ F Free Body: ABJ D + SMJ = 0: MJ - ( N)(0.1 m) - ( N)(0.12 m) = 0 MJ = 229 N-m + SFx = 0: N - V = V = 706 N + SFy = 0: -F N = F = 1324 N
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.