Download presentation
Presentation is loading. Please wait.
1
Intro to Exponential Functions
2
Contrast Linear Functions Change at a constant rate
View differences using spreadsheet Linear Functions Change at a constant rate Rate of change (slope) is a constant Exponential Functions Change at a changing rate Change at a constant percent rate
3
Contrast Suppose you have a choice of two different jobs at graduation
Start at $30,000 with a 6% per year increase Start at $40,000 with $1200 per year raise Which should you choose? One is linear growth One is exponential growth
4
Which Job? How do we get each next value for Option A?
Year Option A Option B 1 $30,000 $40,000 2 $31,800 $41,200 3 $33,708 $42,400 4 $35,730 $43,600 5 $37,874 $44,800 6 $40,147 $46,000 7 $42,556 $47,200 8 $45,109 $48,400 9 $47,815 $49,600 10 $50,684 $50,800 11 $53,725 $52,000 12 $56,949 $53,200 13 $60,366 $54,400 14 $63,988 $55,600 How do we get each next value for Option A? When is Option A better? When is Option B better? Rate of increase a constant $1200 Rate of increase changing Percent of increase is a constant Ratio of successive years is 1.06
5
Amount of interest earned
Example Consider a savings account with compounded yearly income You have $100 in the account You receive 5% annual interest At end of year Amount of interest earned New balance in account 1 100 * 0.05 = $5.00 $105.00 2 105 * 0.05 = $5.25 $110.25 3 * 0.05 = $5.51 $115.76 4 5 View completed table
6
Compounded Interest Completed table
7
Compounded Interest Table of results from calculator Graph of results
Set y= screen y1(x)=100*1.05^x Choose Table (Diamond Y) Graph of results
8
Exponential Modeling Population growth often modeled by exponential function Half life of radioactive materials modeled by exponential function
9
Growth Factor Recall formula new balance = old balance * old balance Another way of writing the formula new balance = 1.05 * old balance Why equivalent? Growth factor: interest rate as a fraction
10
Decreasing Exponentials
Consider a medication Patient takes 100 mg Once it is taken, body filters medication out over period of time Suppose it removes 15% of what is present in the blood stream every hour At end of hour Amount remaining 1 100 – 0.15 * 100 = 85 2 85 – 0.15 * 85 = 72.25 3 4 5 Fill in the rest of the table What is the growth factor?
11
Decreasing Exponentials
Completed chart Graph Growth Factor = 0.85 Note: when growth factor < 1, exponential is a decreasing function
12
Solving Exponential Equations Graphically
For our medication example when does the amount of medication amount to less than 5 mg Graph the function for 0 < t < 25 Use the graph to determine when
13
General Formula All exponential functions have the general format:
Where A = initial value B = growth factor t = number of time periods
14
Typical Exponential Graphs
When B > 1 When B < 1 View results of B>1, B<1 with spreadsheet
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.