Download presentation
Presentation is loading. Please wait.
Published byAbel Henry Modified over 6 years ago
1
Thermodynamic data evaluation for chemical RIB purification
- the experimentalists approach R. Eichler1,2,*, J. Neuhausen1 1Laboratory for Radio- and Environmental Chemistry, Paul Scherrer Institute Villigen, CH-5232, Switzerland 2Department for Chemistry and Biochemistry, University Bern, CH-3012, Switzerland
2
Outline 1. Introduction Adsorption interactions: A) Covalent coordinative bond B) Dispersion interaction C) Metal bond 3. Summary
3
Boundary conditions - needs
Transactinide chemistry? Chemical RIB Purification * Simple volatile species (element or compound) * Formation and release properties – Thermodynamics and Kinetics * Source design – materials – Reaction and Adsorption * Chemical separation – Volatility and Adsorption
4
Gas phase Chemistry of transactinides
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 H Li Na K Rb Cs Fr Be Mg Ca Sr Ba Ra Sc Y La* Ac** Ti Zr Hf V Nb Ta Cr Mo W Mn Tc Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Zn Cd Hg He Ne Ar Kr Xe Rn B Al Ga In Tl C Si Ge Sn Pb N P As Sb Bi O S Se Po F Cl Br I At Te Ce Th Pr Pa Nd U Pm Np Sm Eu Am Gd Cm Tb Bk Dy Cf Ho Es Er Fm Tm Md Yb No Lu Lr Pu * ** Rf Db Sg Mt Ds Rg Bh Hs 112 114 116 113 115 elements compounds
5
Isothermal gas chromatography
yield External chromatogram T=300K Detector 50% T=600K T50 Result: T50 DHads
6
Thermochromatography
yield length T=300K Temperature gradient T=100K Internal chromatogram Tdep detectors Result: Tdep DHads Volatility wanted!
7
Kinetic model of gas adsorption chromatography
Monte Carlo Simulation Condition : * Simple reversible single step adsorption process i.e. No change of the chemical state during the process and no irreversible reaction with the surface or diffusion into the surface * zero surface coverage / carrier free amounts = single atoms no phonon frequency Frenkel-type adsorption kinetics: a= 1/no*exp(-DHads/RT) phonon frequency of the surface material : no -> sticking probability if needed for short-lived isotopes radioactive decay: t1/2 else: texp gas transport through tubes: laminar flow DHads diffusion in the carrier gas Gilliland eqn. Zvara, I., Radiochim. Acta 38, 95 (1985).
8
Gas phase Chemistry of Transactinides
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Tc Re Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La* Hf Ta W Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac** Rf Db Sg Bh Hs Mt Ds Rg 112 113 114 115 116 118 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu * ** Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Element Compound Surface Method Rf RfOX2, RfX4 quartz TC,IC Db DbOX3, DbX5 quartz TC,IC Sg SgO2X2 quartz TC,IC Bh BhOCl3 quartz IC Hs HsO4 quartz TC Hg/Pb/Bi/Po/At/Rn gold/quartz TC, IC
9
Adsorption interactions
Chemisorption -DHads > 30 kJ/mol Physisorption DHads< 30 kJ/mol EA EDB Eads re re r A) Covalent coordinative bond C) Metal bond B) Dispersion interaction
10
Gas phase Chemistry of Transactinides
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Tc Re Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La* Hf Ta W Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac** Rf Db Sg Bh Hs Mt Ds Rg 112 113 114 115 116 118 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu * ** Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Element Compound Surface Method Rf RfOX2, RfX4 quartz TC,IC Db DbOX3, DbX5 quartz TC,IC Sg SgO2X2 quartz TC,IC Bh BhOCl3 quartz IC Hs HsO4 quartz TC Hg/Pb/Bi/Po/At/Rn gold/quartz TC,IC Bond Character Chemisorption Physisorption Chemisorption/
11
A) Covalent coordinative bond
transition element compounds in highest oxidation states -DH0(s) s -DH0(g) DHsubl g 5th period 6th period 7th period -DH0(g), monoatomic metal gases
12
A) Covalent coordinative bond
Db Rf Ta Hf Zr Nb Sg W Mo Bh Re Hs Tc Os Ru
13
A) Covalent coordinative bond
quartz surface RfCl4 BhO3Cl SgO2Cl2 DbOCl3 Eichler, B. et al.: J. Phys. Chem. A 103(46), 9296 (1999).
14
A) Covalent coordinative bond
quartz surface HsO4 Eichler, R. et al.: Radiochim. Acta 87, 151 (1999).
15
B) Dispersion interaction
Inert atoms on metal surfaces: Atoms/molecules on dielectric surfaces: EA/B … effective excitation energy EA/B = IPA/B*; g = 1 for metals; a … polarizability of the adsorbate; IPA/B … ionisation potentials; re … distance between the adsorbate to the substrate; e … dielectric constant of surface material *Pauling, L. Science 1961, 134 (3471), 15.
16
B) Dispersion interaction
re = 240pm (van der Waals radius of Rn)
17
B) Dispersion interaction
Adhesion model Description of DHads proportional to the enthalpy of adhesion: Dgad(A,B) = -2 F (g0(A) g0(B))1/2 ... dissimilarity parameter (calculated) g0... surface energy at T=0 K F ... geometrical factor (empirically 0.31) VA ... Volume of the spherical adsorbate atom DHads = 0.71*109 F F VA2/3 (g0(A) g0(B))1/2 DHMads(Z) / DHMads(Xe) = C(Z,Xe) Z Ne Ar Kr Xe C(Z,Xe) A.R. Miedema, B.E. Nieuwenhuys Surf. Sci. 104, (1981).
18
B) Dispersion interaction Adhesion model extended
Z Ne Ar Kr Xe Rn C(Z,Xe) 0.17 0.52 0.72 1 1.11 Haettig, C. J. Phys. Chem. A 1996, 100 (15), 6243. Nicklass, A.J. Chem. Phys. 1995, 102 (22), 8942.
19
B) Dispersion interaction
Z Ne Ar Kr Xe Rn C(Z,Xe) 0.17 0.52 0.72 1 1.11
20
B) Dispersion interaction
Z Ne Ar Kr Xe 112 114 C(Z,Xe) 0.17 0.52 0.72 1 1.04 1.2 Seth, M.,Schwerdtfeger, P.: J. Chem. Phys. 1997, 106 (9), 3623. Eliav, E. et al. Phys. Rev. A 1995, 52 (4), R. Eichler, J. Phys. Chem B. 106, 5413 (2004).
21
C) Metal bond Metallic character (DHo298(g)-0.5*DHodiss)/DHo298(g)
dimer formation (non metals) lattice formation (metals) Eichler, B.: Kernenergie 19, 307 (1976).
22
C) Metal bond Enthalpy diagram of Release and Adsorption Processes (Elements on Metals) Experiment Hads=HN+HD HV=-Hsolv-HD IN ON
23
Eichler/Miedema model: Adsorption
C) Metal bond: Eichler/Miedema model: Adsorption B A DHnettoads solid state adsorbed state criterion DHsol> 50 kJ/mol B A criterion DHsol< 50 kJ/mol Eichler, B., Rossbach, H.: Radiochim. Acta 33, 121 (1983)
24
Miedema model: Intermetallic solid solution
C) Metal bond Miedema model: Intermetallic solid solution at infinite dilution B B B B A A B B B B Semi empirical model adjusted to hundreds of binary systems VA atomic volume VAsol… atomic volume in solution nWS … electron density at Wigner Seitz cell boundaries F… electronegativities (Miedema scale) Rm… hybridization term (empirical, combination dependent) A.R. Miedema, J. Less-Comm. Met. 46, 67 (1975)
25
Eichler B.: PSI Report 03-01; Villigen (2002), ISSN 1019-0643.
C) Metal bond nWS … electron density at Wigner Seitz cell boundaries Theoretical: Self consistent electronic structure calculations Experimental: nws [d.u.] = 10-2(B/V)1/2 B = bulk modulus V = molar volume [cm3/mole] Empirical: nWS = * A1/2 * (r12/V) * exp (7.03 – (So(s)/ (3*R))) r12 = c + a ln(A) + b So(s) V = (4/3 ) p r12 3 / R* Eichler, B., Rossbach, H.: Radiochim. Acta 33, 121 (1983) Eichler B.: PSI Report 03-01; Villigen (2002), ISSN
26
Derivation of Miedema Electronegativity Parameters
C) Metal bond Derivation of Miedema Electronegativity Parameters From various electronegativity scales: Allred-Rochow Pauling Allen Pearson Sanderson
27
C) Metal bond Noble gases, halogens excluded “0”
28
C) Metal bond Noble gases, halogens excluded “0”
29
Korrelation –DHads(Au) with DHsubl
C) Metal bond Korrelation –DHads(Au) with DHsubl DHnettoads<50kJ/mol
30
B+C) Metal bond + Dispersion interaction
R. Eichler Radiochim. Acta 93, 245–248 (2005)
31
Release Enthalpy DHf =DHSubl - DHSol
32
Release Enthalpy
33
Off-line Release studies
34
C) Metal bond Experiment/Eichler-Miedema Empirically or tables
Born-Haber cycle Eichler-Miedema
35
A/B) coordinative / physisorption
Elements on quartz Soverna, S., PhD-thesis, University Bern, Bern (2004).
36
Hot Targets Intermetallic compounds with Rh
[1] B. Eichler, PSI Report 03-01, Villigen, 2003
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.