Presentation is loading. Please wait.

Presentation is loading. Please wait.

C3 Chapter 3: Exponential and Log Functions

Similar presentations


Presentation on theme: "C3 Chapter 3: Exponential and Log Functions"β€” Presentation transcript:

1 C3 Chapter 3: Exponential and Log Functions
Dr J Frost Last modified: 26th October 2015

2 8 6 4 2 -2 -4 -6 𝑦= 2 π‘₯ x -2 -1 1 2 3 y 0.25 0.5 4 8 ? ? ? ? ? ? This is known as an exponential function. It is useful for modelling things like: population growth/savings with compound interest. The key property of exponential growth is that: the output gets multiplied by some constant each time the input increases (by a unit). e.g. A rabbit population might get 40% larger each year. This is in contrast to linear growth where we add some constant each time. ? ? Get students to sketch axes and tables in their books. Click to Brosketch

3 Gradients of Exponential Functions
You won’t yet be able to differentiate exponential functions 𝑦= π‘Ž π‘₯ till C4. But I’ve calculated some gradients for you – click the black arrow to reveal the graph and gradient function. Function Gradient 𝑦= 1 π‘₯ 𝑑𝑦 𝑑π‘₯ =0 > 𝑦= 1.5 π‘₯ 𝑑𝑦 𝑑π‘₯ =0.41Γ— 1.5 π‘₯ > 𝑦= 2 π‘₯ 𝑑𝑦 𝑑π‘₯ =0.69Γ— 2 π‘₯ > 𝑦= 2.5 π‘₯ 𝑑𝑦 𝑑π‘₯ =0.92Γ— 2.5 π‘₯ > 𝑦= 3 π‘₯ 𝑑𝑦 𝑑π‘₯ =1.10Γ— 3 π‘₯ > 𝑦= 3.5 π‘₯ 𝑑𝑦 𝑑π‘₯ =1.25Γ— 3.5 π‘₯ > Can you estimate the base of the exponential function where the gradient function is the same as the function itself?

4 β€œThe” Exponential Function
Gradient 𝑒= … is known as Euler’s Constant. It is one of the five most fundamental constants in mathematics (0, 1, 𝑖, 𝑒, πœ‹) and we will explore it in the coming slides. But for the purposes of this chapter, the most important thing to appreciate is that: 𝑦= 𝑒 π‘₯ β†’ 𝑑𝑦 𝑑π‘₯ = 𝑒 π‘₯ Although any function of the form 𝑦= π‘Ž π‘₯ is known as an exponential function, 𝑒 π‘₯ is known as β€œthe” exponential function. Yeah, it’s that big a deal… You can find the exponential function on your calculator, to the right (above the β€œln” key) 𝑦= 1 π‘₯ 𝑑𝑦 𝑑π‘₯ =0 > 𝑦= 1.5 π‘₯ 𝑑𝑦 𝑑π‘₯ =0.41Γ— 1.5 π‘₯ > 𝑦= 2 π‘₯ 𝑑𝑦 𝑑π‘₯ =0.69Γ— 2 π‘₯ > 𝑦= 2.5 π‘₯ 𝑑𝑦 𝑑π‘₯ =0.92Γ— 2.5 π‘₯ > 𝑦= 𝑒 π‘₯ 𝑦= 3 π‘₯ 𝑑𝑦 𝑑π‘₯ =1.10Γ— 3 π‘₯ > 𝑦= 3.5 π‘₯ 𝑑𝑦 𝑑π‘₯ =1.25Γ— 3.5 π‘₯ 𝑑𝑦 𝑑π‘₯ = 𝑒 π‘₯ >

5 Bernoulli’s Compound Interest Problem
(This won’t be examined) You have Β£1. If you put it in a bank account with 100% interest, how much do you have a year later? What if the interest is split into 2 instalments of 50% interest, how much will I have? What about 3 instalments of 33.3%? And so on… No. Instalments Money at Maturity 1 2 1 =Β£2 2 1.5 2 =Β£2.25 3 =Β£2.37 4 =Β£2.44 𝑛 1+ 1 𝑛 𝑛 ? ? ? ? Bernoulli is credited as first finding the value of β€˜π‘’β€™, as the solution to this problem. Euler introduced the letter 𝑒 to represent the value for the base of a logarithm (which we’ll see). ? As 𝑛 becomes large, the money at maturity approaches £𝒆 𝑒= lim π‘›β†’βˆž 𝑛 𝑛

6 Examples ? ? ? ? ? ? ? 1 Sketch graphs of: 𝑦= 1 2 +4 𝑒 1 2 π‘₯ 𝑦= 𝑒 2π‘₯
𝑦= 𝑒 1 2 π‘₯ 𝑦= 𝑒 2π‘₯ 𝑦= 𝑒 βˆ’π‘₯ 𝑦 𝑦 𝑦 ? ? ? 𝑦= 𝑒 π‘₯ 4.5 𝑦= 1 2 1 1 π‘₯ π‘₯ π‘₯ The in the power doesn’t do anything terribly exciting except to make the line grow slower (as 𝑒 1 2 π‘₯ = 𝑒 π‘₯ ) 𝑒 2π‘₯ = 𝑒 π‘₯ 2 , so we’re just squaring the 𝑦 values. Note that squaring values less than 1 make them smaller, so the line is below on the left. 𝑒 βˆ’π‘₯ = 1 𝑒 π‘₯ . So start with graph of 𝑦= 𝑒 π‘₯ and reciprocate 𝑦 values. This is known as exponential decay. We have decay whenever the π‘Ž<1 in π‘Ž π‘₯ . 2 The price of a used car can be represented by the formula: 𝑃= 𝑒 βˆ’ 𝑑 10 Where 𝑃 is the price in Β£s and 𝑑 is the age in years. Calculate: The new price: 𝑷=𝟏𝟎𝟎𝟎+πŸπŸ”πŸŽπŸŽπŸŽ 𝒆 𝟎 =Β£πŸπŸ•πŸŽπŸŽπŸŽ The value after 5 years: 𝑷=𝟏𝟎𝟎𝟎+πŸπŸ”πŸŽπŸŽπŸŽ 𝒆 βˆ’ 𝟏 𝟐 =Β£πŸπŸŽπŸ•πŸŽπŸ’.πŸ’πŸ— The long term eventual value of the car? As π’•β†’βˆž, 𝒆 βˆ’ 𝒕 𝟏𝟎 = 𝟏 𝒆 𝒕 𝟏𝟎 will tend to 0. Thus π‘·β†’Β£πŸπŸŽπŸŽπŸŽ d) Sketch the function. ? 17000 ? 1000 ? ?

7 Test Your Understanding
The population of Tiffin Boys since 1970 is modelled using the equation 𝑃=1200βˆ’400 𝑒 βˆ’0.1π‘₯ Where π‘₯ is the number of years since 1970 and 𝑃 is the number of boys. How boys were there in: 𝑷=πŸπŸπŸŽπŸŽβˆ’πŸ’πŸŽπŸŽ 𝒆 𝟎 =πŸπŸπŸŽπŸŽβˆ’πŸ’πŸŽπŸŽ=πŸ–πŸŽπŸŽ 𝑷=πŸπŸπŸŽπŸŽβˆ’πŸ’πŸŽπŸŽ 𝒆 βˆ’πŸŽ.πŸΓ—πŸ’πŸ’ =πŸπŸπŸ—πŸ“ Far into the future 𝑷=𝟏𝟐𝟎𝟎 Sketch a graph to represent the number of Tiffin Boys over time. ? ? ? ? 𝑃 1200 800 π‘₯

8 4 4 4 4 4 4 Inverse of Exponentials π‘₯ 5 5√x 3 π‘₯ log3 x 𝑒 π‘₯ loge x 1024
In C2, we learnt what the inverse is of an exponential function. 1024 4 4 π‘₯ 5 ? 5√x 81 4 4 3 π‘₯ ? log3 x 54.59 4 4 𝑒 π‘₯ loge x ? ! log 𝑒 π‘₯ is the natural log of 𝒙 and is written π₯𝐧 𝒙 (or in β€˜proper maths’, just simply log π‘₯ . Although confusingly on a calculator, log π‘₯ means base 10, not base 𝑒)

9 Solving Equations ? ? ? ? ? ? Solve the following: E1 𝑒 π‘₯ =3 𝒙= π₯𝐧 πŸ‘
2 𝑒 4π‘₯ =3 𝒆 πŸ’π’™ = πŸ‘ 𝟐 πŸ’π’™= π₯𝐧 πŸ‘ 𝟐 𝒙= 𝟏 πŸ’ π₯𝐧 πŸ‘ 𝟐 4=𝑙𝑛 3π‘₯ 𝒆 πŸ’ =πŸ‘π’™ 𝒙= 𝟏 πŸ‘ 𝒆 πŸ’ E4 2 ln π‘₯ +1=5 𝟐 π₯𝐧 𝒙 =πŸ’ π₯𝐧 𝒙 =𝟐 𝒙= 𝒆 𝟐 2𝑒 βˆ’π‘₯ + 𝑒 π‘₯ βˆ’3=0 𝟐+ 𝒆 𝒙 𝟐 βˆ’πŸ‘ 𝒆 𝒙 =𝟎 𝒆 𝒙 𝟐 βˆ’πŸ‘ 𝒆 𝒙 +𝟐=𝟎 𝒆 𝒙 βˆ’πŸ 𝒆 𝒙 βˆ’πŸ =𝟎 𝒆 𝒙 =𝟏 𝒐𝒓 𝒆 𝒙 =𝟐 𝒙=𝟎 𝒐𝒓 𝒙=𝒍𝒏 𝟐 2 π‘₯ 𝑒 π‘₯ =3 𝒍𝒏 𝟐 𝒙 𝒆 𝒙 =𝒍𝒏 πŸ‘ 𝒍𝒏 𝟐 𝒙 +𝒍𝒏 𝒆 𝒙 =𝒍𝒏 πŸ‘ 𝒙 𝒍𝒏 𝟐+𝒙=𝒍𝒏 πŸ‘ 𝒙 𝒍𝒏 𝟐+𝟏 =𝒍𝒏 πŸ‘ 𝒙= 𝒍𝒏 πŸ‘ 𝒍𝒏 𝟐+𝟏 ? ? E2 ? E5 ? E6 ? E3 ?

10 Test Your Understanding
Edexcel C3 June 2012 Q6 ? 𝑓 π‘₯ >2 𝑓 𝑔 π‘₯ =𝑓 ln π‘₯ =𝑒 ln π‘₯ +2=π‘₯+2 𝑒 2π‘₯+3 +2= π‘₯+3= ln π‘₯= βˆ’3+ ln 4 2 𝑦= 𝑒 π‘₯ π‘¦βˆ’2= 𝑒 π‘₯ π‘₯= ln π‘¦βˆ’ 𝑓 βˆ’1 π‘₯ = ln π‘₯βˆ’2 ? e) 𝑦=𝑓(π‘₯) 3 ? ? 3 ? 𝑦= 𝑓 βˆ’1 (π‘₯)

11 More Practice ? ? ? ? ? ? ? Find the exact solution to 3 π‘₯ 𝑒 2π‘₯+1 =5 4
𝒍𝒏 πŸ‘ 𝒙 𝒆 πŸπ’™+𝟏 =𝒍𝒏 πŸ“ 𝒍𝒏 πŸ‘ 𝒙 +𝒍𝒏 𝒆 πŸπ’™+𝟏 =𝒍𝒏 πŸ“ 𝒙 π₯𝐧 πŸ‘ +πŸπ’™+𝟏= π₯𝐧 πŸ“ 𝒙= π₯𝐧 πŸ“ βˆ’πŸ 𝟐+ π₯𝐧 πŸ‘ 4 1 June 2007 Q1 ? 𝒙=𝟐 𝒙= π₯𝐧 πŸ‘ ? ? 2 Jan 2007 Q6 Jan 2007 Q6 π’š=𝒍𝒏 πŸ’βˆ’πŸπ’™ 𝒆 π’š =πŸ’βˆ’πŸπ’™ πŸπ’™=πŸ’βˆ’ 𝒆 π’š 𝒙=πŸβˆ’ 𝟏 𝟐 𝒆 π’š 𝒇 βˆ’πŸ 𝒙 =πŸβˆ’ 𝟏 𝟐 𝒆 𝒙 ? 𝑓:π‘₯β†’ ln 4βˆ’2π‘₯ , π‘₯<2 π‘Žπ‘›π‘‘ π‘₯βˆˆβ„ Domain: π’™βˆˆβ„ ? 3 June 2006 Q4 ? 𝑇=425 300=400 𝑒 βˆ’0.05𝑑 +25 𝑒 βˆ’0.05𝑑 = βˆ’0.05𝑑= ln 𝑑=βˆ’ ln =7.49 ?

12 Exercises ? ? ? ? ? ? ? ? ? ? ? ? ? 5 Exercise 3B 1 f i 6 3 4 a ? b c
𝑓 π‘₯ = ln 2+3π‘₯ π‘₯βˆˆβ„, π‘₯>π‘Ž State the value of π‘Ž. 𝟐+πŸ‘π’™>𝟏 𝒙>βˆ’ 𝟏 πŸ‘ Find the value of 𝑠 for which 𝑓 𝑠 =20 π₯𝐧 𝟐+πŸ‘π’” =𝟐𝟎 𝟐+πŸ‘π’”= 𝒆 𝟐𝟎 𝒔= 𝒆 𝟐𝟎 βˆ’πŸ πŸ‘ β„Ž π‘₯ =40βˆ’10 𝑒 3π‘₯ π‘₯>0, π‘₯βˆˆβ„ State the range of the function. 𝒉 𝒙 <πŸ’πŸŽ Find the exact coordinate of the point where the graph intercepts the π‘₯-axis, in terms of ln 2 . 𝟐 πŸ‘ π₯𝐧 𝟐 ,𝟎 Find β„Ž βˆ’1 π‘₯ stating its domain. 𝒉 βˆ’πŸ 𝒙 = 𝟏 πŸ‘ π₯𝐧 πŸ’βˆ’ 𝟏 𝟏𝟎 𝒙 Domain is π‘₯<40 (i.e. range of β„Ž) Solve ln 2 + ln π‘₯ =4 π₯𝐧 πŸπ’™ =πŸ’ →𝒙= 𝟏 𝟐 𝒆 πŸ’ Solve 𝑒 π‘₯ + 𝑒 βˆ’π‘₯ =2 𝒙=𝟎 Solve 3 π‘₯ 𝑒 2π‘₯+1 =4 𝒙= π₯𝐧 πŸ’ βˆ’πŸ 𝟐+ π₯𝐧 πŸ‘ Exercise 3B ? Solve (giving exact solutions) ln 2π‘₯+1 =5 β†’ 𝒙= 𝒆 πŸ“ βˆ’πŸ 𝟐 2 𝑒 4π‘₯ βˆ’3= →𝒙= 𝟏 πŸ’ π₯𝐧 𝟏𝟏 𝟐 Sketch the following: 𝑦= ln π‘₯+1 𝑦= ln π‘₯ 2 𝑦= ln 4βˆ’π‘₯ 𝑦=3+ln⁑(π‘₯+2) The price of a new car varies according to 𝑃= 𝑒 βˆ’ 𝑑 10 where P is price and t is age in years. State its value when new: Β£πŸπŸ“ 𝟎𝟎𝟎 Calculate its age after 5 years. Β£9098 Find its age when the price falls below Β£5000 πŸ“πŸŽπŸŽπŸŽ=πŸπŸ“ 𝟎𝟎𝟎 𝒆 βˆ’ 𝒕 𝟏𝟎 𝟏𝟏 π’šπ’†π’‚π’“π’” 1 ? f ? ? i 6 3 ? ? 4 ? a ? ? b ? ? c ? ? ?


Download ppt "C3 Chapter 3: Exponential and Log Functions"

Similar presentations


Ads by Google