Download presentation
Presentation is loading. Please wait.
1
Viscoelasticity and Wave Propagation
Part I Gaurav Dutta King Abdullah University of Science and Technology September 6, 2016
2
Outline Introduction to viscoelasticity
Stress-strain relationship and complex modulus Strain energy density Q Summary
3
Outline Introduction to viscoelasticity
Stress-strain relationship and complex modulus Strain energy density Q Summary
4
Viscoelasticity π(π‘)= π π π(π‘)
Viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation π(π‘)= π π π(π‘) Stress Strain Purely elastic material Stress Strain Viscoelastic material Loading Loading Energy Loss Unloading Unloading Hysteresis plot
5
Stress-strain Relationship
Constant Strain Stress Relaxation π(π‘)=π(π‘)β ππ(π‘) ππ‘ Stress relaxation function Observed decrease in stress in response to the same amount of strain
6
Stress-strain Relationship
Constant Stress Creep π(π‘)=π(π‘)β ππ(π‘) ππ‘ Creep function Observed increase in strain in response to the same amount of stress
7
Viscoelastic Materials
8
Viscoelastic Materials
9
Outline Introduction to viscoelasticity
Stress-strain relationship and complex modulus Strain energy density Q Summary
10
Complex Modulus for viscoelastic media
Stress-strain relationship π= Stress, π= Strain π(π‘)= relaxation function π(π‘)=π(π‘)β ππ(π‘) ππ‘ For a lossless media π» π‘ = Heaviside function π π‘ = π π π»(π‘) Hookeβs law π=π π‘ β ππ ππ‘ = ππ π‘ ππ‘ βπ= π π πΏ π‘ βπ= π π π π π = Elastic Modulus
11
Complex Modulus for viscoelastic media
Stress-strain relationship π= Stress, π= Strain π(π‘)= relaxation function π π‘ =π π‘ β ππ π‘ ππ‘ = ππ ππ‘ βπ π‘ = π π‘ π π‘ βπ(π‘) After Fourier transform πΉ= Fourier transform operator πΉ π π =π π πΉ[π(π)] π π =πΉ π π‘ π π‘ = ββ +β π π‘ π π‘ exp βπππ‘ ππ‘ π π = Complex modulus
12
Complex Modulus for viscoelastic media
For a Heaviside function π(π‘) π π = ββ +β π π‘ π π‘ exp βπππ‘ ππ‘ π π‘ = π π‘ π»(π‘) If π(π‘) is of Heaviside type π(π‘)= causal function π π‘ = π (π‘) for π‘>0 π= π π»(π‘) π π‘ π=πΏ π‘ π + π π‘ π π»(π‘) π π = π 1 π +π π 2 (π) π π =π β +ππ 0 β π π‘ βπ(β) exp βπππ‘ ππ‘
13
Complex Modulus for viscoelastic media
π π =π β +ππ 0 β π π‘ βπ(β) exp βπππ‘ ππ‘ π π = π 1 π +π π 2 (π) Storage Modulus π 1 π =π 0 β π π‘ sin ππ‘ ππ‘ Loss Modulus M 2 π =π 0 β π π‘ βπ(β) cos ππ‘ ππ‘
14
Outline Introduction to viscoelasticity
Stress-strain relationship and complex modulus Strain energy density Q Summary
15
Strain Energy Density Strain energy density:
Energy stored by a system per unit volume while undergoing deformation πΈ= 1 2 πππ= 1 2 π π π π 2 Strain energy: π= Volume π π = Elastic modulus π= πΈ π = 1 2 ππ= 1 2 π π π 2 Strain energy density: π π‘ = 1 2 π ππ π ππ = 1 2 πΆ ππππ π ππ π ππ
16
Q For elastic media: π π‘ = 1 2 π ππ π ππ = 1 2 πΆ ππππ π ππ π ππ
π π‘ = 1 2 π ππ π ππ = 1 2 πΆ ππππ π ππ π ππ Loss Modulus Q β quantifies dissipation β π π‘ππππ ππππππ¦ π π‘ππππ ππ π‘βπ π£πππ’ππ ππππππ¦ πππ π‘ ππ πππβ ππ¦πππ = πΈ ΞπΈ π π = π 1 π +π π 2 (π) Storage Modulus π= πΈ π = 1 2 ππ= 1 2 π π π 2 Strain energy density: Energy stored in the volume: πΈ= 1 2 π 1 π 2 π= πΈ ΞπΈ = π 1 π π 2 π 2 = π
πππ (π(π)) πΌπ(π(π)) Energy lost:ΞπΈ= 1 2 π 2 π 2
17
Strain Energy Density For elastic media:
π π‘ = 1 2 π ππ π ππ = 1 2 πΆ ππππ π ππ π ππ For viscoelastic media: π(π‘)=π(π‘)β ππ(π‘) ππ‘ πΆ ππππ βπ( π 1 + π 2 ) π ππ β π π 1 π(π‘β π 1 ) π ππ β π π 2 π(π‘β π 2 ) π π‘ = β 0 β π π 1 + π 2 ππ π‘β π 1 ππ π‘β π 2 π π 1 π π 2
18
Strain Energy Density Strain energy density:
π π‘ = β 0 β π π 1 + π 2 π π 1 π π‘β π 1 π π 2 π π‘β π 2 π π 1 π π 2 1) Take the time-average over a period 2π/π 2) Use the relation: <π
π π π β
π
π π > = 1 2 π
π( π π β
π β ) Time-averaged strain energy density: <π π‘ > = π 2 π 1 π π = π 1 π +π π 2 (π) Time-averaged rate of dissipated strain energy density: < π π‘ > = π π 2 π 2
19
Outline Introduction to viscoelasticity
Stress-strain relationship and complex modulus Strain energy density Q Summary
20
Definition of Q π = Quality factor π β1 = Dissipation factor
Time-averaged strain energy density: <π π‘ > = π 2 π 1 Time-averaged rate of dissipated strain energy density: < π π‘ > = π π 2 π 2 Define time-averaged dissipated strain energy density: <π π‘ > = π β1 < π(π‘) > Q β quantifies dissipation β 2β π‘πππβππ£π π π‘ππππ ππππππ¦ ππππ ππ‘π¦ π‘πππβππ£π πππ π ππππ‘ππ ππππππ¦ ππππ ππ‘π¦ π= 2Γπ(π‘) π(π‘) = 2Γ π 2 π π 2 π 2 = π 1 π 2 π π = π 1 π +π π 2 (π) π = Quality factor π= π
π(π) πΌπ(π) π 1 π , π 2 (π) β₯0 π β1 = Dissipation factor
21
Outline Introduction to viscoelasticity
Stress-strain relationship and complex modulus Strain energy density Q Summary
22
Properties of the relaxation function
1) π π‘ = π π‘ π»(π‘) π π‘ = causal function 2) Strain energy density: π π‘ = 1 2 π ππ π ππ = 1 2 πΆ ππππ π ππ π ππ Elastic π π‘ = 1 2 π ππππ (π‘) π ππ π ππ Viscoelastic π π‘ β₯0 π ππππ π‘ β₯0 π= π π»(π‘) π π‘ = positive real function
23
Properties of the relaxation function
3) Fading memory hypothesis: The value of the stress depends more strongly upon the recent history than upon the remote history of the strain. π π‘ = decreasing function of time ππ ππ‘ t= t 1 β€ ππ ππ‘ t= π‘ 2 , π‘ 1 > π‘ 2 >0
24
Mechanical models and viscoelasticity
Part II Gaurav Dutta King Abdullah University of Science and Technology September 7, 2016
25
Mechanical models and wave propagation
For elastic medium: Spring π= π π π For viscoelastic medium: π= π π‘ πβπ Dashpot (dissipates energy) Spring (stores energy) +
26
Mechanical models and wave propagation
Maxwell Model Kelvin-Voigt Model Zener or SLS Model
27
Maxwell Model π= π π π 1 π π‘ = π ππ‘ π=π π π‘ π 2 π= π 1 + π 2 π=ππ
π= π π π 1 Spring π π‘ = π ππ‘ π=π π π‘ π 2 Dashpot π= π 1 + π 2 π π = elastic const. of spring π= viscosity π π‘ π π π + π π = π π‘ π π=ππ π= π π π π π = ππ ππβπ πΉ π π =π π πΉ[π(π)] Relaxation time Complex Modulus
28
Relaxation function for Maxwell model
π= π π π π π = ππ ππβπ π(π‘)=π»(π‘) Measure the stress after applying a constant unit strain π π‘ = π π‘ π π‘ βπ π‘ =π π‘ β π π‘ π π‘ =π π‘ βπΏ π‘ =π(π‘) π π‘ π π π + π π = π π‘ π ππ ππ‘ + π π = π π πΏ π‘ βπ π‘ = π π exp βπ‘/π π»(π‘) Relaxation function
29
Creep function and Q for Maxwell model
Measure the strain after applying a constant unit stress π(π‘)=π»(π‘) π π‘ =π π‘ β π π‘ π π‘ =π π‘ βπΏ π‘ =π(π‘) π π‘ π π π + π π = π π‘ πβπ π‘ = 1 π π 1+ π‘ π π»(π‘) Creep function Q: π= π
π(π(π)) πΌπ(π(π)) = π 1 π 2 =ππ π π = ππ ππβπ = π 1 +π π 2 π= π π π
30
Relaxation/Creep function for Maxwell model
π π‘ = 1 π π 1+ π‘ π π»(π‘) π π‘ = π π exp βπ‘/π π»(π‘) π= π π π 1) Creep function resembles the creep function of a viscous fluid. 2) There is no asymptotical residual stress as seen in real solids !!!
31
Kelvin-Voigt Model π= π 1 + π 2 = π π
π+π π π‘ π Relaxation function:
π π‘ = π π
π» π‘ +ππΏ(π‘) Creep function: Complex Modulus: π π = π π
+πππ π π π‘ = 1 π π
1β exp β π‘ π π»(π‘) Relaxation time: π= π π π
π π = π
πππ π π πΌπππ(π(π)) = 1 ππ
32
Relaxation/Creep function for KV model
π π‘ = 1 π π
1β exp β π‘ π π»(π‘) π π‘ = π π
π» π‘ +ππΏ(π‘) π= π π π
Relaxation function has no time dependence. Creep function lacks the instantaneous response of real solids !!!
33
Experimental Creep function for solids
34
Standard Linear Solid Model
Zener or SLS Model π= π 1 π 1 π 1 =π π π‘ π 2 π 2 = π 2 π 2 π= π 1 + π 2 π= π 1 + π 2 Stress-strain relationship: π+ π π ππ ππ‘ = π π
(π+ π π ππ ππ‘ ) π π
= π 1 π 2 π 1 + π 2 π π = π π 1 + π 2 π π = π π 2 Strain relaxation time Relaxed Modulus Stress relaxation time
35
Standard Linear Solid Model
Zener or SLS Model Stress-strain relationship: π+ π π ππ ππ‘ = π π
(π+ π π ππ ππ‘ ) After taking Fourier transform on both sides π π = π π
1+ππ π π 1+ππ π π π π = π π 1 + π 2 π π
= π 1 π 2 π 1 + π 2 π π = π π 2 π(π‘)=π»(π‘) π π‘ = π π
1β 1β π π π π exp β π‘ π π π»(π‘) Relaxation function: π π‘ = 1 π π
1β 1β π π π π exp β π‘ π π π»(π‘) Creep function: π(π‘)=π»(π‘)
36
Relaxation/Creep function for SLS model
π π‘ = 1 π π
1β 1β π π π π exp β π‘ π π π»(π‘) π π‘ = π π
1β 1β π π π π exp β π‘ π π π»(π‘) π π = π π 1 + π 2 π π = π π 2
37
Experimental Creep function for solids
38
Q for SLS model π π = π π
1+ππ π π 1+ππ π π = π 1 +π π 2 π£ π = π π π π(π)= π
π(π(π)) πΌπ(π(π)) = π 1 π 2 = 1+ π 2 π π π π π( π π β π π ) ππ π ππ =0 π 0 = 1 π 0 = π π π π
39
Q for SLS model π(π)= 1+ π 2 π π π π π( π π β π π )
π(π)= 1+ π 2 π π π π π( π π β π π ) π 0 = 1 π = π π π π βπ 0 = 2 π 0 π π β π π π π = π 0 π π π π = π 0 π π β1
40
Generalized SLS model Stress-strain relationship: Total stress:
π π + π ππ π π π ππ‘ = π π
π (π+ π ππ ππ ππ‘ ) π =1,β¦,L π π π = π π
π 1+ππ π ππ 1+ππ π ππ π π
π = π 1π π 2π π 1π + π 2π π ππ = π π π 1π + π 2π Total stress: π= π=1 πΏ π π π ππ = π π π 2π
41
Generalized SLS model Total stress: π π
= πΏπ π
π Relaxation function:
π= π=1 πΏ π π = π=1 πΏ π π π = π=1 πΏ π π
π 1+ππ π ππ 1+ππ π ππ π Relaxation function: π π‘ = π π
1β 1 πΏ π=1 πΏ 1β π ππ π ππ exp β π‘ π ππ π»(π‘) π π π = π π
π 1+ππ π ππ 1+ππ π ππ π ππ = π π π 2π π ππ = π π π 1π + π 2π π π
= πΏπ π
π
42
Viscoacoustic wave-equation
Zener or SLS Model π π‘ =πΎ 1β 1β π π π π exp β π‘ π π π»(π‘) π= π π‘ πβπ β π =πΎ 1β 1β π π π π π£ π₯ + πΎ π π 1β π π π π exp β π‘ π π π» π‘ β π£ π₯ π=βπ ππ£ ππ₯ =π£ π₯ = π π (memory variable)
43
Viscoacoustic wave-equation
Zener or SLS Model π= πΎ π π 1β π π π π exp β π‘ π π π» π‘ β π£ π₯ ππ ππ‘ =β π π π + πΎ π π 1β π π π π π£ π₯ Viscoacoustic wave-equations β ππ ππ‘ =πΎ 1β 1β π π π π π£ π₯ +π Newtonβs law: β 1 π ππ ππ₯ = π π£ π₯ ππ‘
44
Viscoacoustic wave-equation
π π π ππ‘ =β π π π ππ + πΎ π ππ 1β π ππ π ππ π£ π₯ Generalized SLS Model π =1,β¦,L β ππ ππ‘ =πΎ 1β 1 πΏ π=1 πΏ 1β π ππ π ππ π£ π₯ + 1 πΏ π=1 πΏ π π β 1 π ππ ππ₯ = π π£ π₯ ππ‘
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.