Presentation is loading. Please wait.

Presentation is loading. Please wait.

Finite element methods

Similar presentations


Presentation on theme: "Finite element methods"— Presentation transcript:

1 Finite element methods
László Szirmay-Kalos

2 Representation of functions by finite data
Finite function series: L(p)  Lj bj (p) 1 box 1 tent b1 b1 b2 b2 b3 b3 Piece-wise constant Piece-wise linear

3 Representation of the radiance
Finite elements: L(p)  Lj bj (p) bj: total function system box, tent, harmonic, Chebishev, etc. diffuse radiosity: piece-wise constant non-diffuse case: partitioned hemisphere (piece-wise constant), directional distributions (spherical harmonics) illumination networks (links)

4 Rendering equation in function space
L*(p) = Lj bj (p) L L L +Le b2 b1 L* Original rendering equation Finite element approximation

5 Projected rendering equation
L* L*(p) = Lj bj (p) Basis functions b2 +Le b1 L* b2’ F L* b1’ Adjoint base +Le* L* = Le* +F L*

6 L* Adjoint base <bi , bj’> = 1 if i=j and 0 otherwise b2 L* b2’
Equality is required in a subspace of adjoint basis functions: b1’, b2’ ,..., bn’ orthogonality: <bi , bj’> = 1 if i=j and 0 otherwise b2 L* +Le L* b2’ b1 projection b1’

7 Derivation of the projected rendering equation
FEM: Projecting to an adjoint base: < •, bi’> L(p)  Lj bj (p) p=(x,w) Lj bj (p)  Lje bj (p) + t Lj bj (p) Li = Lie +  Lj <tbj ,bi’>

8 Projected rendering equation = linear equation for Lj
Rij = <tbj ,bi’> L = Le + R L FEM: 1. define basis functions and adjoint basis function tesselation, function shape 2. Evaluate Rij 3. Solve the linear equation for L1, L2 ,…, Ln 4. For any p: L(p)  Lj bj (p)

9 Galerkin’s method <bi ,bi’>=1  bi’ = bi /<bi ,bi>
The base and the adjoint base are the same except for a normalization constant: <bi ,bi’>=1  bi’ = bi /<bi ,bi> Error is orthogonal to the original base Point collocation method equality is required at finite dot points pi bi’ (p) = (p - pi)

10 Example: Diffuse case Galerkin+constant basis
<u,v>=Su(x)v(x)dx  <bi,bi> = Ai Aj bi is 1 on patch i w’ h(x,-w’) ’ Ai x <tbj,bi’>= 1/Ai Ai bj (h(x,-w’)) fr(x) cos’ dw’dx

11 Solid angle  Area integral
Aj h(x,-w’) = y w’ ’ Ai dw’= dy cos / |x - y|2 x <tbj,bi>=1/AiAiAjv(x,y) fr(x) dydx = ai Fij cos’ cos  |x - y|2 Patch-patch form factor: Albedo: cos’ cos  ai = fri  Fij=1/Ai AiAj v(x,y) dydx  |x - y|2

12 Example: Diffuse case Point collocation+linear basis
bi bi’= (x - xi) Aj w’ h(x,-w’) ’ Ai xi <tbj,bi’>=  bj (h(xi,-w’)) fr(xi) cos’ dw’ cos’ cos  = Aiv(xi,y) bj (y) fr(xi) dy = ai Fij point-patch |xi - y|2


Download ppt "Finite element methods"

Similar presentations


Ads by Google