Download presentation
Presentation is loading. Please wait.
Published byAntonia Griffith Modified over 6 years ago
1
Demonstrating the validity of an argument using syllogisms
2
P Q P Q P Q ~ P Q P Q ~ Q ~ P <
A SYLLOGISM is a valid argument – usually a basic pattern of reasoning that is frequently used. The following are examples of syllogisms. MODUS PONENS P Q P Q DISJUNCTIVE SYLLOGISM P Q ~ P Q MODUS TOLLENS P Q ~ Q ~ P < An argument can be analyzed two premises at a time.
3
p r ~ r p s < s q q
4
p r P Q ~ p ~ r ~ Q p s < ~ P s q q Modus Tollens
Each premise is a piece of information. The first two premises yield a new piece of information, ~p. This can now be used with the third premise.
5
p r ~ p ~ r p s < s q q
6
p r Disjunctive Syllogism ~ p s P Q < ~ r ~ P p s < Q s q q
7
p r ~ p ~ r s p s < s q q
8
Modus Ponens p r P Q ~ p ~ r q s P p s < Q s q q
9
p r ~ r p s < s q q The premises will not necessarily
be arranged in order, with premises that fit together placed together. s q q
10
p r s q ~ r ~ r p s < p s < s q p r q
11
s q s q ~ r ~ r p s < p s < p r p r q
12
s q ~ r Number the premises for reference. p s < p r q
13
1. s q 2. ~ r 3. p s < 4. p r q
14
1. s q 2. ~ r Move the conclusion 3. p s < 4. p r q q
15
1. s q 2. ~ r 3. p s < 4. p r q q
16
1. s q P Q 2. ~ r ~ Q 3. p s < ~ P 4. p r 5. ~ p 2 , 4 , MT
Modus Tollens P Q 2. ~ r ~ Q 3. p s < ~ P 4. p r Every step of the process must be justified. The reason for writing statement 5 is clear when you combine statements 2 and 4 using the syllogism Modus Tollens. 5. ~ p , 4 , MT q
17
1. s q 2. ~ r 3. p s < 4. p r 5. ~ p , 4 , MT q
18
1. s q P Q 2. ~ r < ~ P 3. p s < Q 4. p r 5. ~ p 2 , 4 , MT
Disjunctive Syllogism 2. ~ r P Q < ~ P 3. p s < Q 4. p r 5. ~ p , 4 , MT 6. s , 5 , DS q
19
1. s q 2. ~ r 3. p s < 4. p r 5. ~ p , 4 , MT 6. s , 5 , DS q
20
1. s q P Q 2. ~ r P 3. p s < Q 4. p r 5. ~ p 2 , 4 , MT
Modus Ponens P Q 2. ~ r P 3. p s < Q 4. p r 5. ~ p , 4 , MT 6. s , 5 , DS 7. q , 6 , MP q
21
1. s q 2. ~ r 3. p s < 4. p r 5. ~ p 2 , 4 , MT 6. s 3 , 5 , DS
You are finished when you reach the given conclusion ( in this case “q” ). There is a reason given for each statement that is deduced from the given premises. 3. p s < 4. p r 5. ~ p , 4 , MT 6. s , 5 , DS 7. q , 6 , MP q
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.