Download presentation
Presentation is loading. Please wait.
Published byBenedict Griffith Modified over 6 years ago
1
Submodularity Reading Group More Examples of Matroids
M. Pawan Kumar
2
Uniform Matroid S = {1,2,…,m} X ⊆ S
I = Set of all X ⊆ S such that |X| ≤ k
3
Linear Matroid Matrix A of size n x m, S = {1,2,…,m}
X ⊆ S, A(X) = set of columns of A indexed by X X I if and only if A(X) are linearly independent
4
Graphic Matroid G = (V, E), S = E X ⊆ S X ∈ I if X is a forest
5
Outline Partition Matroid Transversal Matroid Matching Matroid Gammoid
6
Partition Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} {Si} {{1, 2, 3}, {4, 5, 6}, {7, 8}}? Non-empty subsets {Si} Partition Mutually exclusive Si ∩ Sj = ϕ, for all i ≠ j Collectively exhaustive ∪i Si = S
7
Partition Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} {Si} {{1, 2, 3}, {4, 5, 6, 7}, {7, 8, 9}}? Non-empty subsets {Si} Partition Mutually exclusive Si ∩ Sj = ϕ, for all i ≠ j Collectively exhaustive ∪i Si = S
8
Partition Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} {Si} {{1, 2, 3}, {4, 5, 6, 7}, {8, 9}}? Non-empty subsets {Si} Partition Mutually exclusive Si ∩ Sj = ϕ, for all i ≠ j Collectively exhaustive ∪i Si = S
9
Partition Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} Partition {Si}
{{1, 2, 3}, {4, 5, 6, 7}, {8, 9}}
10
Limited Subset of Partition
Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} Partition {Si} {{1, 2, 3}, {4, 5, 6, 7}, {8, 9}} Limits {li} Limited Subset (LS) X ⊆ S |X ∩ Si| ≤ li, for all i {1, 2, 4, 5, 6, 8}?
11
Limited Subset of Partition
Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} Partition {Si} {{1, 2, 3}, {4, 5, 6, 7}, {8, 9}} Limits {li} Limited Subset (LS) X ⊆ S |X ∩ Si| ≤ li, for all i {1, 2, 4, 5, 8}?
12
Limited Subset of Partition
Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} Partition {Si} {{1, 2, 3}, {4, 5, 6, 7}, {8, 9}} Limits {li} Limited Subset (LS) X ⊆ S |X ∩ Si| ≤ li, for all i {1, 2, 4, 5}?
13
Limited Subset of Partition
Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} Partition {Si} {{1, 2, 3}, {4, 5, 6, 7}, {8, 9}} Limits {li} Limited Subset (LS) X ⊆ S |X ∩ Si| ≤ li, for all i Subset of an LS is an LS Subset system
14
Subset System Set S {Si, i = 1, 2, …, n} is a partition
{l1,l2,…,ln} are non-negative integers X ⊆ S∈I if X is a limited subset of partition
15
Subset System Set S {Si, i = 1, 2, …, n} is a partition
{l1,l2,…,ln} are non-negative integers X ⊆ S∈I if |X ∩ Si| ≤ li for all i ∈ {1,2,…,n} (S, I) is a matroid? Partition Matroid
16
Outline Partition Matroid Transversal Matroid Matching Matroid Gammoid
17
Partial Transversal Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} {Si}
{{1, 2, 3}, {4, 5, 6, 7}, {7, 8, 9}} S1, S2, …, Sn ⊆ S (not necessarily disjoint) X ⊆ S is a partial transversal (PT) of {Si} X = {x1,…,xk}, each xj chosen from a distinct Si {1, 4, 7, 8}?
18
Partial Transversal Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} {Si}
{{1, 2, 3}, {4, 5, 6, 7}, {7, 8, 9}} S1, S2, …, Sn ⊆ S (not necessarily disjoint) X ⊆ S is a partial transversal (PT) of {Si} X = {x1,…,xk}, each xj chosen from a distinct Si {1, 7, 8}?
19
Partial Transversal Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} {Si}
{{1, 2, 3}, {4, 5, 6, 7}, {7, 8, 9}} S1, S2, …, Sn ⊆ S (not necessarily disjoint) X ⊆ S is a partial transversal (PT) of {Si} X = {x1,…,xk}, each xj chosen from a distinct Si {1, 7}?
20
Partial Transversal Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} {Si}
{{1, 2, 3}, {4, 5, 6, 7}, {7, 8, 9}} S1, S2, …, Sn ⊆ S (not necessarily disjoint) X ⊆ S is a partial transversal (PT) of {Si} X = {x1,…,xk}, each xj chosen from a distinct Si {7}?
21
Partial Transversal Set S {1, 2, 3, 4, 5, 6, 7, 8, 9} {Si}
{{1, 2, 3}, {4, 5, 6, 7}, {7, 8, 9}} S1, S2, …, Sn ⊆ S (not necessarily disjoint) X ⊆ S is a partial transversal (PT) of {Si} X = {x1,…,xk}, each xj chosen from a distinct Si Subset of a PT is a PT Subset system
22
Subset System Set S S1, S2, …, Sn ⊆ S (not necessarily disjoint)
X ⊆ S∈I if X is a partial transversal of {Si} (S, I) is a matroid? Transversal Matroid
23
Outline Partition Matroid Transversal Matroid Matching Matroid Gammoid
24
Matching G = (V, E) Matching is a set of disjoint edges.
No two edges in a matching share an endpoint.
25
✓ Matching G = (V, E) Matching is a set of disjoint edges.
No two edges in a matching share an endpoint.
26
✗ Matching G = (V, E) Matching is a set of disjoint edges.
No two edges in a matching share an endpoint.
27
Matching Matroid G = (V, E) S = V X ⊆S ∈I if a matching covers X
(S, I) is a matroid? Matching Matroid
28
Outline Partition Matroid Transversal Matroid Matching Matroid Gammoid
29
Directed Graph D = (V, A) v0 v8 v1 v2 v3 v4 v5 v6 v7 v9
30
t-s Path D = (V, A) t v0 v8 v1 v2 v3 v4 v5 v6 s v7 v9 Walk from t to s consisting of distinct vertices
31
t-s Path D = (V, A) t v0 v8 v1 v2 v3 v4 v5 v6 s v7 v9 Walk from t to s consisting of distinct vertices
32
T-S Path T S A t-s path where t T and s S, T, S ⊆V v0 v8 v1 v2 v3
33
T-S Path T S A t-s path where t T and s S, T, S ⊆V v0 v8 v1 v2 v3
34
T-S Path T S A t-s path where t T and s S, T, S ⊆V v0 v8 v1 v2 v3
35
Vertex Disjoint T-S Paths
Set of T-S Paths with no common vertex
36
Vertex Disjoint T-S Paths
✓ v4 v5 v6 S v7 v9 Set of T-S Paths with no common vertex
37
Vertex Disjoint T-S Paths
Common Vertex v7 v1 v2 v3 ✗ v4 v5 v6 S v7 v9 Set of T-S Paths with no common vertex
38
Vertex Disjoint T-S Paths
Common Vertex v0 v1 v2 v3 ✗ v4 v5 v6 S v7 v9 Set of T-S Paths with no common vertex
39
Gammoid v0 v8 S ⊆V X ⊆ S v1 v2 v3 X v4 v5 v6 X∈I? v7 v9 S X∈I if some vertex disjoint T-X paths cover X
40
Gammoid v0 v8 S ⊆V X ⊆ S v1 v2 v3 X v4 v5 v6 X∈I? v7 v9 S X∈I if some vertex disjoint T-X paths cover X
41
Gammoid v0 v8 S ⊆V X ⊆ S v1 v2 v3 X v4 v5 v6 X∈I? v7 v9 S X∈I if some vertex disjoint T-X paths cover X
42
Strict Gammoid v0 v8 S = V X ⊆ S v1 v2 v3 v4 v5 v6 v7 v9 X∈I if some vertex disjoint T-X paths cover X
43
Gammoid S S ⊆ V (S, I) matroid? X ⊆ S
X∈I if some vertex disjoint T-X paths cover X
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.