Presentation is loading. Please wait.

Presentation is loading. Please wait.

Orbital Diagrams, Electron Configurations, and Dot diagrams

Similar presentations


Presentation on theme: "Orbital Diagrams, Electron Configurations, and Dot diagrams"— Presentation transcript:

1 Orbital Diagrams, Electron Configurations, and Dot diagrams
Unit 2 (Chapter 13)

2 Rules for filling e- in the e- cloud.
Aufbau Principle: Electrons fill lowest energy levels 1st. Pauli Exclusion Principle: An orbital can only hold two e- and they must have opposite spin. (Cannot have the same 4 quantum numbers) Hund’s Rule: Sublevels with multiple orbitals (p, d, f) must fill orbitals one at a time before doubling up. 1s 2s 2p

3 Mn Mn 1. Manganese Z = 25 A) orbital  diagram B) electron 
2p 3s 3p 4s 3d B) electron  configuration 1s2 2s2 2p6 3s2 3p6 4s2 4s2 3d5 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 7p 7d 7f 7g 7h 7i Mn Mn C) Dot diagram

4 O 2. Oxygen Z = 8 A) orbital  diagram B) electron  configuration 1s2
2p B) electron  configuration 1s2 2s2 2p4 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 7p 7d 7f 7g 7h 7i C) Dot diagram O

5 Mg Mg 3. Magnesium Z = 12 A) orbital  diagram B) electron 
2p 3s 3s B) electron  configuration 1s2 2s2 2p6 3s2 3s2 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 7p 7d 7f 7g 7h 7i Mg Mg C) Dot diagram

6 Make sure you corrected your worksheet
4. Iron Z = 26 A) orbital  diagram 1s 2s 2p 3s 3p 4s 3d B) electron  configuration 1s2 2s2 2p6 3s2 3p6 4s2 4s2 3d6 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 7p 7d 7f 7g 7h 7i C) Dot diagram Fe Fe

7 As 5. Arsenic Z = 33 A) orbital  diagram B) electron  configuration
2p 3s 3p 4s 3d 4p B) electron  configuration 1s2 2s2 2p6 3s2 3p6 4s2 4s2 3d10 4p3 4p3 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 7p 7d 7f 7g 7h 7i C) Dot diagram As

8 Ne 6. Neon Z = 10 A) orbital  diagram B) electron  configuration 1s2
2p B) electron  configuration 1s2 2s2 2s2 2p6 2p6 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 7p 7d 7f 7g 7h 7i C) Dot diagram Ne

9 C C 7. Carbon Z = 6 A) orbital  diagram B) electron  configuration
1s 2s 2p B) electron  configuration 1s2 2s2 2s2 2p2 2p2 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 7p 7d 7f 7g 7h 7i C) Dot diagram C C

10 Sn 8. Tin Z = 50 A) orbital  diagram B) electron  configuration 1s2
2p 3s 3p 4s 3d 4p 5s 4d 5p B) electron  configuration 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 5s2 4d10 5p2 5p2 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 5g 6s 6p 6d 6f 6g 6h 7s 7p 7d 7f 7g 7h 7i C) Dot diagram Sn

11 c = 9. What is the frequency of light that has a wavelength of 685 nanometers. wavelength 685 nano nano = 10-9 so this is 685 x 10-9 m Knowns and unknown = c c = 3.00 x 108 m/s ν = ______________ 3.00 x 108 m/s = λ = ______________ 685 x 10-9 m 685 x 10-9 m = 4.38 x /s

12 10. What is the energy of a photon of radiation emitted by a radio station broadcasting at 93.7 MHz?
Mega (M) = 106 so this is 93.7 x 106 Hz Knowns and unknown E = h h = x J•s E = ν = ______________ 93.7 x 106 Hz (6.626 x J•s) (93.7 x 106 s-1) E = ______________ E = 6.21 x J


Download ppt "Orbital Diagrams, Electron Configurations, and Dot diagrams"

Similar presentations


Ads by Google