Download presentation
Presentation is loading. Please wait.
1
The 13th Symposium on Accelerator Physics
CEPC Parameter Choice Dou Wang, Chenghui Yu, Yuan Zhang, Yiwei Wang, Huiping Geng, Sha Bai, Na Wang, Jiyuan Zhai, Xiaohao Cui, Jie Gao, Qing Qin Ji Shou, Hu Nan Province, China August, 2017
2
Physics goals of CEPC Electron-positron collider (45.5, 80, 120 GeV)
Higgs Factory Precision study of Higgs (mH, JPC, couplings) Looking for hints of new physics Luminosity > 2.0×1034cm-2s-1 Z & W factory Precision test of standard model Rare decays Luminosity > 1.0×1034cm-2s-1 Flavor factory: b, c, t and QCD studies
3
Four stages towards CDR
Sawtooth effect Beam loading COD correction Collision tuning Since May 2015 Since Oct 2012 Since May 2016 Since Nov 2016
4
CEPC layout 方案二 方案一
5
CEPC bunch distribution
W & Z C0=100km C0=100km Higgs
6
Beamstrahlung effect Typical issue for energy-frontier e+e− colliders
During collision, the deflected particles will lose part of its energy due to the synchrotron radiation. Extra energy spread Beam loss for large energy deviation life time reduction Detector background (photons, hadrons…) Divergence angle interfere the detection of small-angle events Constraint for energy spread Constraint for life time Large energy acceptance is essential! Harder DA!
7
Crab waist collision large Piwinski’s angle
overlapping area much smaller than σz small βy Crab waist sextupoles to supress betatron resonances
8
Machine constraints / given parameters
Energy E0 Circumference C0 NIP Beam power P0 y* Emittance coupling factor Bending radius Piwinski angle y enhancement by crab waist Fl ~1.5 Energy acceptance (DA) Phase advance per cell (FODO) 100km
9
Constraint for CEPC parameter choice
Limit of Beam-beam tune shift Fl: y enhancement by crab waist Beam lifetime due to beamstrahlung BS life time: 30 min Beamstrahlung energy spread A=0/BS (A5) HOM power per cavity (coaxial coupler)
10
Parameter choice – step 1
Beam-beam limit: Fl: y enhancement by crab waist, ~ 1.5 for Higgs, 1.9 for W and 2.6 for Z.
11
Parameter choice – step 2
12
Parameter choice – step 3
BS life time: 30 min y: -- phase advance/cell, -- bending angle/cell. Estimate :
13
Parameter choice – step 4
14
Parameter choice – step 5
Effective bunch length: overlap area of colliding bunches Hour glass effect:
15
Parameter choice – step 6
Vrf , s Energy acceptance from RF:
16
Parameter choice – step 7
Beam lifetime due to radiative Bhabha scattering Beam lifetime due to Beamstrahlung HOM power per cavity HOM loss factor: *V.I. Telnov, "Issues with current designs for e+e- and gammagamma colliders“, PoS Photon2013 (2013)
17
Cross-section for radiative Bhabha scattering
18
Lifetime due to radiative Bhabha
For CEPC(Pre-CDR) and FCCee, Life time of FCCee: 72 min Life time of CEPC(Pre-CDR) : 55 min For CEPC(CDR) Life time of CEPC(CDR) : 100 min Life time due to beamstrahlung and Bhabha at the same level for CEPC
19
CEPC CDR parameters Higgs W Z-low lum. Z-high lum. Number of IPs 2
Higgs W Z-low lum. Z-high lum. Number of IPs 2 Energy (GeV) 120 80 45.5 Circumference (km) 100 SR loss/turn (GeV) 1.61 0.32 0.033 Half crossing angle (mrad) 16.5 Piwinski angle 2.28 3.6 6.33 Ne/bunch (1010) 9.68 2.3 Bunch number 420 5700 3510 27000 Beam current (mA) 19.5 98.6 38.8 298.5 SR power /beam (MW) 31.4 31.3 1.3 9.9 Bending radius (km) 11.4 Momentum compaction (10-5) 1.15 IP x/y (m) 0.36/0.002 Emittance x/y (nm) 1.18/0.0036 0.52/0.0017 0.17/0.0038 Transverse IP (um) 20.6/0.085 13.7/0.059 7.81/0.087 x/y/IP 0.025/0.085 0.014/0.068 0.017/0.053 RF Phase (degree) 128 134.7 151 VRF (GV) 2.03 0.45 0.069 f RF (MHz) (harmonic) 650 650 (217800) Nature z (mm) 2.75 2.98 2.92 Total z (mm) 2.85 3.0 HOM power/cavity (kw) 0.42 (2cell) 0.38 (2cell) 0.096 (2cell) 0.74 (2cell) Energy spread (%) 0.096 0.064 0.036 Energy acceptance (%) 1.1 Energy acceptance by RF (%) 1.98 1.46 1.2 n 0.19 0.11 0.12 Life time due to beamstrahlung_cal (minute) 63 F (hour glass) 0.93 0.963 0.987 Lmax/IP (1034cm-2s-1) 2.0 5.6 1.0 7.7
20
Higgs Luminosity vs. crossing angle
Keep beamstrahlung life time constant (52min) 100km luminosity emittance
21
Higgs Luminosity vs. y*
Keep beamstrahlung life time constant (52min) 100km luminosity emittance
22
Higgs Luminosity vs. SR power
100km goal
23
MDI related parameters
old new L* (m) 1.5 2.2 Crossing angle (mrad) 30 33 Strength of QD0 (T/m) 200 150 Strength of detector solenoid (T) 3.5 3.0 Strength of anti-solenoid (T) 13 7.0
24
Vertical emittance induced by solenoid
Vertical emittance growth Higgs: pm W: pm Z: pm Vertical emittance at Z pole is most dangerous with solenoid! Coupling: 0.3% for Higgs and W Real model Larger coupling factor (2.2%) at Z pole Detector
25
CEPC upgrade (wangdou20161219-100km_1mmy)
tt H-high lumi. H-low pow. W Z Number of IPs 2 Energy (GeV) 175 120 80 45.5 Circumference (km) 100 SR loss/turn (GeV) 7.55 1.67 0.33 0.034 Half crossing angle (mrad) 15 Piwinski angle 1.6 2.5 3.57 5.69 Ne/bunch (1011) 1.41 1.12 1.05 0.46 Bunch number 98 555 211 1000 16666 65716 Beam current (mA) 6.64 29.97 11.4 50.6 367.7 1449.7 SR power /beam (MW) 50 19 16.7 12.7 Bending radius (km) 11 Momentum compaction (10-5) 1.3 0.96 3.1 3.3 IP x/y (m) 0.2/0.002 0.3/0.001 0.3 /0.001 0.1 /0.001 0.12/0.001 Emittance x/y (nm) 3.19/0.0097 1.01/0.0031 2.68/0.008 0.93/0.0049 Transverse IP (um) 25.3/0.14 17.4/0.055 16.4/0.09 10.5/0.07 x/y/IP 0.016/0.055 0.029/0.083 0.0082/0.055 0.0075/0.054 RF Phase (degree) 122.2 123.3 149 160.8 VRF (GV) 8.92 2.0 0.63 0.11 f RF (MHz) (harmonic) 650 650 (217800) Nature z (mm) 2.62 2.72 3.8 3.93 Total z (mm) 2.7 2.9 3.9 4.0 HOM power/cavity (kw) 0.53(5cell) 0.75(2cell) 0.28(2cell) 1.0 (2cell) 1.6(1cell) 6.25(1cell) Energy spread (%) 0.14 0.098 0.065 0.037 Energy acceptance (%) 1.5 Energy acceptance by RF (%) 2.6 1.8 1.1 n 0.23 0.26 0.18 Life time due to beamstrahlung_cal (minute) 52 F (hour glass) 0.89 0.83 0.84 0.91 Lmax/IP (1034cm-2s-1) 0.62 5.42 2.06 4.08 18.0 70.97
26
100km CEPC luminosity potential (1mmy+50MW/beam)
H z
27
CEPC Luminosity vs circumference
* Fabiola Gianotti, Future Circular ColliderDesign Study, ICFA meeting, J-PARC,
28
Nonlinearity sources Amplitude dependent non-linear tune shift:
The undisturbed linear part, The kinematic part, The influence of the fringe field, The octupole component. Amplitude dependent non-linear tune shift: So,
29
Kinematic effects Then,
Hamiltonian includes the high-order terms of Px and Py. nonlinear kinematic effect originated from the large angles of particles in the interaction region is responsible for the large tune-shift which in turn limits the dynamic aperture. Then, A.Bogomyagkov, S.Glykhov, E.Levichev, P.Piminov
30
Quadrupole fringe fields
With a simple model of two matched parabolas for fringe field A.Bogomyagkov, S.Glykhov, E.Levichev, P.Piminov
31
Seminar at CERN, March 24th 2014
Chromatic sextupoles Vertical chromatic sextupole pair separated by –I transformer gives the following coordinate transformation in the first order*) Pair of sextupoles Octupole By analogy to the octupole and using the expression for the FF chromaticity we found for the vertical detuning (2 pairs) *) A.Bogomyagkov, S.Glykhov, E.Levichev, P.Piminov Seminar at CERN, March 24th 2014
32
CEPC amplitude-tune dependence
x=0.22 y=0.002 Cxx (m-1) Cxy (m-1) Cyy (m-1) Kinematic effects 3.7 271 44762 Fringe field (QD0+QF1) x=0.144 y=0.002 Cxx (m-1) Cxy (m-1) Cyy (m-1) Kinematic effects 8.6 414 44762 Fringe field (QD0+QF1) Larger x* give help to DA while keeping y*! * Nonlinear effect of sextupole pairs can be corrected by the attached weak sextupole pairs.
33
Luminosity vs. betax*
34
Energy acceptance vs. betax*
Larger x* release the difficulty of DA study.
35
Summary A consistent design method for CEPC parameter choice with carb waist scheme has been created. The 100km Double Ring configuration with shared SCRF has been defined as baseline in order to avoid the sawtooth and beam loading effects. CEPC was optimized at Higgs energy. W and Z just make do with what they have. 2mm y* and 31MW SR power for CDR. Further upgrade was also considered. Requirement for energy acceptance reduced to 1.1% by enlarging the ring and x*. Recently, x* was increased to 0.36m for better DA.
36
Thanks for your attention!
37
Back up
38
parameters for CEPC double ring (wangdou20170306-100km_2mmy)
Pre-CDR Higgs W Z Number of IPs 2 Energy (GeV) 120 80 45.5 Circumference (km) 54 100 SR loss/turn (GeV) 3.1 1.67 0.33 0.034 Half crossing angle (mrad) 16.5 Piwinski angle 3.19 5.69 4.29 Ne/bunch (1011) 3.79 0.968 0.365 0.455 Bunch number 50 412 5534 21300 Beam current (mA) 16.6 19.2 97.1 465.8 SR power /beam (MW) 51.7 32 16.1 Bending radius (km) 6.1 11 Momentum compaction (10-5) 3.4 1.14 4.49 IP x/y (m) 0.8/0.0012 0.171/0.002 0.171 /0.002 0.16/0.002 Emittance x/y (nm) 6.12/0.018 1.31/0.004 0.57/0.0017 1.48/0.0078 Transverse IP (um) 69.97/0.15 15.0/0.089 9.9/0.059 15.4/0.125 x/y/IP 0.118/0.083 0.013/0.083 0.0055/0.062 0.008/0.054 RF Phase (degree) 153.0 128 126.9 165.3 VRF (GV) 6.87 2.1 0.41 0.14 f RF (MHz) (harmonic) 650 650 (217800) Nature z (mm) 2.14 2.72 3.37 3.97 Total z (mm) 2.65 2.9 4.0 HOM power/cavity (kw) 3.6 (5cell) 0.41(2cell) 0.36(2cell) 1.99(2cell) Energy spread (%) 0.13 0.098 0.065 0.037 Energy acceptance (%) 1.5 Energy acceptance by RF (%) 6 1.1 n 0.23 0.26 0.15 0.12 Life time due to beamstrahlung_cal (minute) 47 52 F (hour glass) 0.68 0.96 0.98 Lmax/IP (1034cm-2s-1) 2.04 2.0 5.15 11.9
39
Z luminosity vs. coupling
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.