Download presentation
Presentation is loading. Please wait.
1
Standard of Competency
Solving Linear Programming Problem Basic Competency 2.1 Solving System of Linear Inequalities in Two Variables 2.2 Mathematics modelling from linear programming problem
2
Solving System of Linear Inequalities in Two Variables
Symbol : ≤ (less than or equal to), ≥ (more than or equal to), < (less than), > (more than) x – 3y < 6 3x – 5y ≤ -1
3
PROGRAM LINEAR (Linear Programming) Kusuma Bangsa Senior High School
CLASS XII NATURAL SCIENCE Kusuma Bangsa Senior High School
4
x y (x,y) Solving of Linear Inequalities in Two Variables Example :
Determine the area of solution set from linear inequalities in two variable following : 2x + 3y < 6 4x – y ≥ 12 a. 2x + 3y < 6 x y (x,y) 3 2 (0,2) (3,0)
5
P(0,0) 2(0) + 3(0) < 6 0 < 6 Solution Area
6
b. 4x – y ≥ 12 x y (x,y) 3 -12 (3,0) (0,-12)
7
P(0,0) 4(0) - (0) ≥12 0 ≥ 12 Solution Area
8
Y = 2x- 8 Y – 2x = -8 Solution Area P(0,0) (0) - 2(0) ….-8 0 ≥ -8 Y – 2x ≤-8
9
5x + 6y = 30 Solution Area P(0,0) 5(0) +6(0) ….30 0 < 30 5x + 6y < 30
10
Solving of System Linear Inequalities in Two Variables
1. 2x -2y ≥4 and x – y ≥ 6 2. x + 3y ≤ 4 and 2x + y ≤ 8, and 5x – 8y ≤ 0
11
x y (x,y) x y (x,y) Sketch the system of linear inequalities below
1. 2x + 3y ≤ 6, 4x + y ≤ 4, x ≥0, and y ≥ 0 2x + 3y ≤ 6 4x + y ≤ 4 x y (x,y) x y (x,y) 3 1 2 4 (0,2) (3,0) (0,4) (1,0)
12
x = 0 4x+y=4 Solution Area 2x+3y=6 y = 0
13
x = 0 x = 0 4x+y=4 Solution Area 2x+3y=6 y = 0
14
Sketch the system of linear inequalities below
2. x + y ≥ 4, x + y ≤ 9, 2x-3y ≤6, x ≥0, and y ≥ 0 x + y ≥ 4 x + y ≤ 9 x y (x,y) x y (x,y) 9 4 9 4 (4,0) (0,9) (9,0) (0,4) x y (x,y) 2x-3y ≤6 3 -2 (3,0) (0,-2)
15
x = 0 x + y = 9 2x-3y = 6 Solution Area y = 0 x + y = 4
16
x = 0 x + y = 9 2x-3y = 6 Solution Area y = 0 x + y = 4
17
Solution Area 5x+4y ≤20 3x+6y≤ 18 x ≥0, and y ≥ 0 (0,5) (0,3) (6,0)
(4,0)
18
Optimum solution from objective function of
system of linear inequalities in two variables ax + by ≤ c and rx + sy ≤ p as constraints, Z = cx + dy as the objective function
19
Determine the maximum value Z = 2x + 3y at the system of linear inequalities
2x + 3y ≤ 6, 4x + y ≤ 4, x ≥ 0, y ≥ 0 2x + 3y ≤ 6 4x + y ≤ 4 x y (x,y) x y (x,y) 3 1 2 4 (0,2) (3,0) (0,4) (1,0)
20
Determine the maximum value Z = 2x + 7y at the system of linear inequalities
4x + 6y ≤ 3, x + y ≤ 2, x ≥ 0, y ≥ 0 Determine the minimum value Z = 5x + 7y at the system of linear inequalities x + 3y ≥ 9, 2x - y ≤ 12, x ≥ 0, y ≥ 0
21
x = 0 x = 0 4x+y=4 Solution Area (0,2) ? 2x+3y=6 (0,0) (1,0) y = 0
22
4x+y=4 2x+3y=6 x 1 4x + y = 4 4x + 6y = 12 - x 2 -5y = -8 Y= 8/5
23
Solution Area (3/5,8/5) x = 0 x = 0 4x+y=4 2x+3y=6 y = 0 (0,2) (0,0)
(1,0) y = 0
24
Titik pojok Nilai Z = 2x + 3y (0,0) 2(0) + 3(0) = 0 2(1) + 3(0) = 2
(1,0) 2(0) + 3(2) = 6 (0,2) (3/5,8/5) 2(3/5) + 3(8/5) = 6 the maximum value is 6
25
Determine the minimum value Z = 4x + 3y at the system of linear inequalities
2x + y ≥ 6, x + 2y ≥ 6, 6x + y ≥12, x ≥ 0, y ≥ 0 2x + y ≥ 6 x + 2y ≥ 6 x y (x,y) x y (x,y) 3 6 6 3 (0,6) (3,0) (0,3) (6,0) x y (x,y) 2 6x + y ≥12 12 (2,0) (0,12)
26
x = 0 6x + y = 12 (0,12) 2x + y = 6 Solution Area B A (6,0) x + 2y = 6
27
2x + y = 6 x + 2y = 6 2x + y = 6 6x + y = 12 x 1 2x + y = 6
- -3y = -6 Y= 2 A(2,2) X = 2 2x + y = 6 6x + y = 12 - -4x = -6 x= 3/2 B(3/2,3) y = 3
28
Titik pojok Nilai Z = 4x + 3y (6,0) 4(6) + 3(0) = 24 4(0) + 3(12) = 36
(0,12) 4(2) + 3(2) = 14 (2,2) (3/2,3) 4(3/2) + 3(3) = 15 the minimum value is 14
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.