Download presentation
Presentation is loading. Please wait.
Published byJasper McGee Modified over 6 years ago
1
Non-linear dynamics of relativistic particles: How good is the classical phase space approach?
Peter J. Peverly Sophomore Intense Laser Physics Theory Unit Illinois State University
2
National Science Foundation
Acknowledgment Undergrad researchers: R. Wagner, cycloatoms J. Braun, quantum simulations A. Bergquist, graphics T. Shepherd, animations Advisors: Profs. Q. Su, R. Grobe Support: National Science Foundation Research Corporation ISU Honor’s Program
3
Quantum probabilities vs
classical distributions For harmonic oscillators same For non-linear forces different
4
? Motivation Solution strategy
Is classical mechanics valid in systems which are non-linear due to relativistic speeds Solution strategy Compare classical relativistic Liouville density with the Quantum Dirac probability ?
5
Theoretical Approaches
Dirac Braun, Su, Grobe, PRA 59, 604 (1999) Liouville Peverly, Wagner, Su, Grobe, Las Phys. 10, 303 (2000) RK-4 variable step size
6
Construction of classical density distributions
Quantum probability |Y(r)|2 Classical particles Large density P(r) Classical density
7
Construction of a classical density
choose s wisely: if s too small: if s too large:
8
Accuracy optimization
5.2 10.4 15.6 20.8 10 100 1000 4 5 Number of mini-gaussians N % Error (constant width s ) 0.5 1 1.5 2 % Error (constant N) 0.0001 0.001 0.01 0.1 1 Width of each mini-gaussian s
9
Relativistic 1D harmonic oscillator
simplest system to study relativity for classical and quantum theories dynamics can be chaotic H. Kim, M. Lee, J. Ji, J. Kim, PRA 53, 3767 (1996) Wagner, Peverly, Su, Grobe, Phys. Rev. A 61, (2000)
10
Nonrel electron in B-field = rotating 2D oscillator
See Robert Wagner’s talk (C6.10) at 15:48 today
11
Exploit Resonance Non-rel rel w w Velocity/c 100 % 80 % 60 % 40 % 20 %
w L Wagner, Su, Grobe, Phys. Rev. Lett. 84, 3284 (2000)
12
Spatial probability density P(x,t)
Non-Rel Relativistic
13
Position <x> qm and <x>cl
Non-Relativistic Liouville = Schrödinger Relativistic Liouville ≈ Dirac !
14
Spatial width <Dx>
classical quantum
18
New structures Dirac classical
19
Sharp localization Dirac classical
20
Summary - Phase space approach valid in relativistic regime
- Novel relativistic structures localization - Implication: cycloatom Peverly, Wagner, Su, Grobe, Las. Phys. 10, 303 (2000) Wagner, Peverly, Su, Grobe, Phys. Rev. A 61, 3502 (2000) Su, Wagner, Peverly, Grobe, Front. Las. Phys. 117 (Springer, 2000)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.