Presentation is loading. Please wait.

Presentation is loading. Please wait.

Measurement of the Neutrino Mass hierarchy in the deep sea

Similar presentations


Presentation on theme: "Measurement of the Neutrino Mass hierarchy in the deep sea"— Presentation transcript:

1 Measurement of the Neutrino Mass hierarchy in the deep sea
J. Brunner

2 Matter effects & Mass Hierarchy
Solar Neutrinos : Matter effects inside sun  m2 > m1 Matter effects in Earth (not yet measured !)  m3 >< m1,m2 Normal Hierarchy Inverted Hierarchy

3 Matter effects & Mass Hierarchy
e see additional potential due to W-exchange in +e  +e scattering Illustration for constant electron density ne At resonant energy 13 maximal A changes sign with ne via  /  A changes sign with m2  mass hierarchy !

4 Example Earth Matter Effect : P(µe)
Resonance energy Earth mantle : 6-7 GeV GLOBES NH IH cos = 0.6 Baseline = 7645 km Inclination = 36.9˚

5 Example Earth Matter Effect : P(µµ)
Resonance energy Earth mantle : 6-7 GeV NH IH GLOBES cos = 0.6 Baseline = 7645 km Inclination = 36.9˚

6 Sensitivity Calculation
Fit of event count in Energy-Zenith space Color code : bin-by-bin significance of hierarchy difference Oscillation parameter fixed Oscillation parameter fitted W. Winter : arXiv:

7 Dense Mton detector with KM3Net design
ORCA Dense Mton detector with KM3Net design Oscillation Research with Cosmics in the Abyss Less than 20 MEuro with current KM3Net technology

8 PINGU : Sensitivity combined

9 ORCA Sensitivity  Comparable or Better !
6 years Cascades Muons No particle ID Cascades better than Muons Combination improves sensitivity by about a factor 2 Muons only

10 Huber : Sensitivity over time
ArXiv:

11 A neutrino beam towards orca

12 Why consider Beams ? PINGU / ORCA Motivations Neutrino Beams
Fast : Construction within few years Significant measurement after few years Stay within low budget Neutrino Beams Expensive & long(er) Timescale  counter intuitive Matter effects with Atmospheric Nu’s More challenging than originally hoped for Beam allows for complementary measurement Easier to motivate if pointing towards an existing detector Maybe possible in “parasitic mode”

13 Why consider Beams ? Recently : change of paradigm for European LBL program Opens new, so far neglected options

14 Optimal Baseline ? For L>2000km the oscillation probabilities are always well separated for both MH hypotheses To find optimal baseline calculate event rates N ~ 1/L2 N ~ E (cross section) Fixed beam profile ORCA detector response NH IH

15 Optimal Baseline L=2600km maximizes the difference in event rates between two MH hypotheses Event rate difference NH - IH

16 Proton Accelerator Complex Protvino
Presentation S. Ivanov (IHEP) on CERN  Talk Wednesday

17 Proton Accelerator Complex Protvino
Presentation S. Ivanov (IHEP) on CERN

18

19 Protvino – ORCA Baseline 2588km ; beam inclination : 11.7˚ (cos = 0.2) Deepest point 134km : 3.3 g/cm3

20 SKAT bubble chamber Shielding SKAT target Decay pipe p 55m focus 140m
Courtesy: R. Nahnhauer

21 Beam parametrisation (1988)
Neutrino Focus Anti-Neutrino Focus Scaling to ANTARES site (0.245/2600)2 Z. Phys. C 40 (1988) 487

22 Off-Axis Beam : suppress HE tail
Beam optimisation still to be done Off-axis or combination on-axis/off-axis might be favorable

23 Event rates - Signal e CC µ CC NH 10927 +/- 24 NH 1621 +/- 255
Event numbers for p.o.t.s (3 years NOVA beam) 20  statistical separation of both Mass Hierarchy hypotheses from signal 10000 muon events for beam normalisation 3.5% separation between MH hypotheses Other contributions: : /- 13 ; /- 8 ; NC : 4732 NH /- 24 NH /- 255 IH /- 43 e CC µ CC IH /- 100

24 Event rates – All Flavours & Mis-ID
Event numbers for pots 9-18% difference for NH/IH 7  statistical separation of MH hypotheses Can allow for 3-4 % syst. uncertainty No requirement of energy reconstruction tracks cascades NH /- 45 NH /- 200 IH /- 15 IH /- 80

25 Flavour identification & Neutrino Energy
Need to separate “tracks” from “cascades” Villars : C2GT project (F. Dydak) CERN to Gulf of Taranto

26 Flavour identification
Villars : C2GT project (F. Dydak) Clean separation of µ CC and e CC at 0.8 GeV OM spacing 3m

27

28 Dense detector 3x3 with cone display
Electron-Neutrino Event, C-Cone clearly visible E = 5 GeV ; Ee= 4 GeV 50nsec 100 nsec

29 Synergies between potential Sites
Protvino 11.0˚ 4.1˚ Modane 2393km 13.6˚ Antares 2588km Gran Sasso 2189km Nemo 2574km

30 Conclusion Preliminary Performance Figures of ORCA encouraging
Mass hierarchy measurement in the deep sea possible Upgraded proton accelerator at Protvino well suited for LBL towards Mediterranean Sea Needed : 1021 p.o.t. within few years Perfect subject for Russian Mega-Science program Synergy with Underground Labs in the same beam Complementary to measurement with atmospheric  Complementary between ORCA / PINGU High Significance determination of Mass Hierarchy

31 Possible Timescale : Finalize optimization work for both options Currently active groups : CPPM, APC, ECAP (Erlangen)  Publish comprehensive document ~2016 : Planning “Phase II” of KM3Net Parallel : Contact with Russian partners, LoI ? First encouraging contact 08/2013 (Y. Kudenko, INR) Start contact with Modane project(s) (ex LBNO) First discussion 08/2013

32 Backup

33 Neutrinos from Beams Narrow band beam 6-9 GeV 1020 p.o.t.
Eliminate ambiguities Improve mass hierarchy sensitivity arXiv: Narrow band beam 6-9 GeV 1020 p.o.t.

34 P(µ µ) cos = 0.1 Baseline = 1274 km NH Inclination = 5.7˚ IH
GLOBES cos = 0.1 Baseline = 1274 km Inclination = 5.7˚ NH IH

35 P(µ µ) cos = 0.2 Baseline = 2548 km NH Inclination = 11.5˚ IH
GLOBES cos = 0.2 Baseline = 2548 km Inclination = 11.5˚ NH IH

36 P(µ µ) cos = 0.3 Baseline = 3823 km NH Inclination = 17.4˚ IH
GLOBES cos = 0.3 Baseline = 3823 km Inclination = 17.4˚ NH IH

37 P(µ µ) cos = 0.4 Baseline = 5097 km NH Inclination = 23.6˚ IH
GLOBES cos = 0.4 Baseline = 5097 km Inclination = 23.6˚ NH IH

38 P(µ µ) cos = 0.5 Baseline = 6371 km NH Inclination = 30.0˚ IH
GLOBES cos = 0.5 Baseline = 6371 km Inclination = 30.0˚ NH IH

39 P(µ µ) cos = 0.6 Baseline = 7645 km NH Inclination = 36.9˚ IH
GLOBES cos = 0.6 Baseline = 7645 km Inclination = 36.9˚ NH IH

40 P(µ µ) cos = 0.7 Baseline = 8919 km NH Inclination = 44.4˚ IH
GLOBES cos = 0.7 Baseline = 8919 km Inclination = 44.4˚ NH IH

41 P(µ µ) cos = 0.8 Baseline = 10194 km NH Inclination = 53.1˚ IH
GLOBES cos = 0.8 Baseline = km Inclination = 53.1˚ NH IH

42 P(µ µ) cos = 0.9 Baseline = 11468 km NH Inclination = 64.2˚ IH
GLOBES Beam to IceCube cos = 0.9 Baseline = km Inclination = 64.2˚ NH IH

43 P(µ µ) cos = 1.0 Baseline = 12742 km NH Inclination = 90.0˚ IH
GLOBES cos = 1.0 Baseline = km Inclination = 90.0˚ NH IH

44 Counting Muons from Beam Neutrinos
Optimal Beamline : km Favoured Option: FermiLab – KM3Net site in Mediterranean Sea 1300 versus 950 events for both mass hierarchy hypotheses in Mton underwater detector (ORCA)  Inverse approach : Counting “Electrons” arXiv:

45 P(µe) cos = 0.1 Baseline = 1274 km NH Inclination = 5.7˚ IH GLOBES
(CP-phase varied in steps of 30˚) cos = 0.1 Baseline = 1274 km Inclination = 5.7˚ NH IH

46 P(µe) cos = 0.2 Baseline = 2548 km NH Inclination = 11.5˚ IH
GLOBES cos = 0.2 Baseline = 2548 km Inclination = 11.5˚ NH IH

47 P(µe) cos = 0.3 Baseline = 3823 km NH Inclination = 17.4˚ IH
GLOBES cos = 0.3 Baseline = 3823 km Inclination = 17.4˚ NH IH

48 P(µe) cos = 0.4 Baseline = 5097 km NH Inclination = 23.6˚ IH
GLOBES cos = 0.4 Baseline = 5097 km Inclination = 23.6˚ NH IH

49 P(µe) cos = 0.5 Baseline = 6371 km NH Inclination = 30.0˚ IH
GLOBES cos = 0.5 Baseline = 6371 km Inclination = 30.0˚ NH IH

50 P(µe) cos = 0.6 Baseline = 7645 km NH Inclination = 36.9˚ IH
GLOBES cos = 0.6 Baseline = 7645 km Inclination = 36.9˚ NH IH

51 P(µe) cos = 0.7 Baseline = 8919 km NH Inclination = 44.4˚ IH
GLOBES cos = 0.7 Baseline = 8919 km Inclination = 44.4˚ NH IH

52 P(µe) cos = 0.8 Baseline = 10194 km NH Inclination = 53.1˚ IH
GLOBES cos = 0.8 Baseline = km Inclination = 53.1˚ NH IH

53 P(µe) cos = 0.9 Baseline = 11468 km NH Inclination = 64.2˚ IH
GLOBES Beam to IceCube cos = 0.9 Baseline = km Inclination = 64.2˚ NH IH

54 P(µe) cos = 1.0 Baseline = 12742 km NH Inclination = 90.0˚ IH
GLOBES cos = 1.0 Baseline = km Inclination = 90.0˚ NH IH

55 Oscillation parameters
Taken from Global Fit (Fogli et al.) for both hierarchy options CP phase left free

56 Neutrino Cross sections
Simple parton scaling assumed (QE, Res. ignored) Flavour universality m threshold NC approximation

57 Neutrino Cross sections
Simple parton scaling assumed (QE, Res. ignored) Flavour universality m threshold NC approximation NC, CC: e µ  Solid : neutrino , dashed : antineutrino

58 Event rates Here : no flavour misidentification CC Rates NC Rates

59 Event rates Include Background and Flavour tagging Total Background :
Total Event Rate :

60 Flavour identification
Misidentification probability : assume same for both directions 50% at 2 GeV  random ; 20% at 5 GeV ; 10% at GeV

61 V. Ludwig (ECAP)

62 Systematic Uncertainties
Detector Response Water parameters Extensively studied in ANTARES Neutrino flux Can be monitored with muon events Neutrino Cross Section Ongoing and planned short baseline Experiments Oscillation parameters ORCA with atmospheric neutrinos


Download ppt "Measurement of the Neutrino Mass hierarchy in the deep sea"

Similar presentations


Ads by Google