Download presentation
Presentation is loading. Please wait.
1
Chapter 10 Independence, Dominance, and Matchings
Graph Theory Chapter 10 Independence, Dominance, and Matchings 大葉大學 資訊工程系 黃鈴玲
2
Contents 10.1 Independence of Vertices 10.2 Domination of Vertices
10.3 Matchings in Graphs
3
10.1 Independence of Vertices
Definition 9.18 Definition 10.1
4
Note 10.3
5
For a graph G, the independence number a(G) satisfies .
Example 10.4 (Frequency Assignment Problem) 9個可用的頻道(u1~u9),會互相干擾的連一條邊,最多可同時使用幾個頻道? u3 u5 u4 u2 G u1 u6 u7 u9 u8 5個 Observation 10.6 For a graph G, the independence number a(G) satisfies
6
10.2 Domination of Vertices
Definition 10.11
7
For a graph G, the domination number g (G) a (G).
Example (城鎮安排police station位置) 城鎮(u1~u9),交通方便,police station能管理到的的連一條邊,最少需幾個 police station? u3 u5 u4 u2 G u1 u6 u7 u9 u8 3個 Observation 10.16 For a graph G, the domination number g (G) a (G).
8
10.3 Matchings in a Graph Example 1.3 (Job Assignment Problem) Job J1~J5, Applicants A1~A7, Job與Applicant連邊表示申請者通過該職位的 申請測驗,試找出最佳之配對。 Jobs: qualified Applicants:
9
Example (Weighted Job Assignment Problem) Job J1~J5, Applicants A1~A7, Job與Applicant連邊表示申請者通過測驗及 適合該職位的程度(權重數字越高越好),試找出權重總和最高之配對。
10
Definition 10.26 not a matching perfect matching
11
a b M = { ab, cd, ef } is a maximum matching M’ = { bc, de } is maximal, not maximum. c d e f Maximum (所有matching中最多edge的) Maximal (此matching不可再加邊成為更大的matching)
12
Remark 10.28 Definition 10.30
13
An M-augmenting path P of G :
P中的邊將M的與M的性質交換,M中的邊數會加一 Theorem 10.32
14
補充: Maximum Matchings in Bipartite Graphs
Algorithm (Maximum Matching Algorithm for Bipartite graphs) [To determine a maximum matching in a bipartite graph G with V(G)={v1, v2, …, vp} and an initial matching M1.] 1. i 1, M M1 2. If i < p, then continue; otherwise, stop, M is a maximum matching now. 3. If vi is matched, then i i +1 and return to Step 2; otherwise, v vi and Q is initialized to contain v only. For j = 1, 2, …, p and j i, let Tree(vj)=F (表示vj不在alternating tree中) Also, Tree(vi)=T.
15
4.2 If Q= , then i i +1 and return to step 2; otherwise, delete a vertex x from Q and continue.
Suppose that N(x)={y1, y2, …, yk}. Let j If j k, then y yj; otherwise, return to Step 4.2. 4.3.3 If Tree(y)=T, then j j + 1 and return to Step 4.3.2; otherwise, continue If y is incident with a matched edge yz, then Tree(y)T, Tree(z)T, Parent(y)x, Parent(z)y and add z to Q, j j + 1, and return to Step Otherwise, y is a single vertex (找到了!) and we continue Use array Parent to determine the alternating v-x path P’ in the tree. Let P P’U{xy} be the augmenting path. 5. Augment M along P to obtain a new matching M’. Let M M’, i i +1 , and return to step 2.
16
Q : Example x1 y1 x2 y2 x3 y3 x4 y4 x2 y5 y2 x3 x5 y6 x5 x6 y6 x4 y3
i=1, x1 is matched. x1 y1 i=2, v=x2 x2 y2 Q : x2 x3 x5 x4 x1 x6 x3 y3 x4 y4 x2 y5 y2 x3 x5 y6 x5 x6 y6 紅色邊:Initial matching M x4 y3 x1 y4 x6 y5 y1 M-augmenting path
17
Example (Fig 6.6) x1 y1 i=3, x3 is matched. x2 y2 i=4, x4 is matched.
… y5 x5 i=12, y6 is matched. x6 y6 New matching M’ M’ = { x2y6, x5y4, x1y1, x4y3, x3y2, x6y5 } is maximum.
18
Homework Let G be the given bipartite graph. The edges of a matching M are shown in bold. Beginning with M and using the Maximum Matching Algorithm for Bipartite graphs to find a maximum matching for G. v1 v2 v3 v4 v5 v6 v13 v12 v11 v10 v9 v8 v7
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.