Presentation is loading. Please wait.

Presentation is loading. Please wait.

Heterotic—IIA duality map of discrete data

Similar presentations


Presentation on theme: "Heterotic—IIA duality map of discrete data"— Presentation transcript:

1 Heterotic—IIA duality map of discrete data
July 17, ’17,  at KEK Taizan Watari (IPMU) based on arXiv: with A.P.Braun (Oxford) work in progress

2 Heterotic—Type II duality
Type IIA / M-theory mirror symmetry Heterotic Type IIB / F-theory Yau-Zaslow conjecture ‘95, Katz--Klemm—Vafa conjecture, Harvey-Moore ‘95, Maulik—Pandharipande ‘07, …. and maybe more.

3 Duality Het IIA @6D K3 (metric, B) 16 SUSY charges preserved.
BPS particle counting on both sides: K3 (metric, B) Seiberg ’88, Aspinwall Morrison ’94, Vafa Witten ’94, Harvey—Strominger ’95, Bershadsky-Sadov-Vafa ’95 … particles with electric charge using counting in Het IIA reasoning math

4 Duality Het IIA @6D 16 SUSY charges preserved. 6D eff. theories w/ (1,1) SUSY fibred “adiabatically” over D N=2 SUSY. K3 (metric, B) Seiberg ’88, Aspinwall Morrison ’94, Vafa Witten ’94, Harvey—Strominger ’95, Bershadsky-Sadov-Vafa ’95 … 4D N=2  right mover has Kachru Vafa ’95 Klemm Lerche Mayr ’95 Ferrara et.al. ’95, Vafa Witten ’95, ……. Banks Dixon ‘88

5 fibre adiabatically over
first step: specify a lattice polarization of K3 (IIA). examples: quartic K3 elliptic K3 “fixed” over vary over

6 fibre adiabatically over
first step: specify a lattice polarization of K3 (IIA). second: two aspects to study further discrete choices in fibration. degeneration of fibre not adiabatic. “fixed” over vary over Part II Part I

7 Part I: degenerations of K3 and solitons
An example of degeneration

8 Type IIA / M = deg-2 K3 fibr. over
Friedman ’84, …., Davis et.al. ’13, Braun TW ‘16 Type IIA / M = deg-2 K3 fibr. over Add point(s) from

9 A well-understood case
(-1) A well-understood case (-2) (-2) IIA / (-1) Dual to Het / T2 x K3 with k NS5-branes (-1) (-2) (-2) (-1) Ganor Hanany ‘96 Morrison Vafa ‘96

10 Generalization Type II degeneration of lattice-pol. K3 surface IIA /
generic fibr degen. to rational surfaces -fibr over ell. curve Clemens—Schmid exact sequence monodromy (-1) (-2) (-2) (-1)

11 Type II degeneration of lattice-pol. K3 surface
Kulikov , Persson, Pinkham, Friedman, Morrison, Looijenga, Saha, Scattone, …. Type II degeneration of lattice-pol. K3 surface generic fibr degen. to rational surfaces -fibr over ell. curve Clemens—Schmid exact sequence monodromy Het dual: soliton, monodromy in Narain moduli

12 back to examples. (deg-2 K3 fibre)
Braun TW ‘16 back to examples. (deg-2 K3 fibre) Het interpretation: defects in = corridor branches NS 5-brane: 1st eg. above: degen. to degen. to degen. to all fall into 4 classes for deg2 K3 Type II degeneration.

13 More varieties in degeneration of K3 surface
Type III: dual graph = triangulation of sphere monodromy construction: Davis et.al. ’13 more hyper-moduli -tuned solitons. non semi-stable: reducible fibre with turned into semi-stable, after base change of order k fractional Type II or III soliton. Lattice polarization: which pair of solitons can be BPS together.

14 Part II: Duality Dictionary of Discrete Data
restrict attention to CY3 w/o Type II or III degen.

15 Multiple choices for a given lattice pol. K3
toric data (polytopes) Choose any one from For blue points only. M =ell.fibr. over Candelas Font ‘96

16 Multiple choices of lattice-pol. K3 fibration
Choose any one from For blue points only. Klemm et.al. ‘04 Candelas Font ‘96

17 Multiple choices of lattice-pol. K3 fibration
4319 choices as toric hypersurface 3117 of them admit K3 fibration 1983 of them come with multiple choices, sometimes the same , sometimes not. Kreuzer Skarke ‘98 with …… in Type IIA language Choose any one from For blue points only. Klemm et.al. ‘04 Candelas Font ‘96

18 A coarse classification
labeled by #(BPS charged hyper) Detailed duality dictionary has to involve, in IIA language, classical intersection ring of divisors also hypermultiplet moduli how to work out Het vacua systematically? more tools need to be developed. NL loci counting GW inv. of vert. curve classes (IIA) new SUSY index (Het) massless charged hyper multiplicity (4D eff. theory) Harvey-Moore ’95, Klemm Kreuzer Riegler Scheidegger ’04, Maulik Pandharipande ’07, Haghighat Klemm ’09,.. (deg.2  )

19 Multiple choices for a given lattice pol. K3
toric data (polytopes) The same #(hyper), and The same GW inv. for vertical curve classes, for all of n = 0,1,2. The intersection ring distinguishes n= even and n= odd cases. (12+n, 12-n) instanton distrib. in Het M =ell.fibr. over Morrison Vafa ‘96

20 In the case of deg.2 K3 in the fibre,
Kachru Vafa ‘95 Het on “T2 x” K3 instanton Type IIA on CY3 GW-inv of vert. classes Het 1-loop + <div.div.div.> intersection threshold Kaplunovsky et.al., Antoniadis et.al. ’95 Klemm et.al. ‘04 which one is dual?

21 In the case of deg.2 K3 in the fibre,
Kachru Vafa ‘95 Het on “T2 x” K3 instanton Type IIA on CY3 GW-inv of vert. classes Het 1-loop + <div.div.div.> intersection threshold Braun TW ‘16 This one is dual to the instant. distrib.

22 Summary There is a long way to go to get to the level of understanding of mirror symmetry. reflexive polytopes

23 Braun TW ‘16


Download ppt "Heterotic—IIA duality map of discrete data"

Similar presentations


Ads by Google