Presentation is loading. Please wait.

Presentation is loading. Please wait.

Workshop on Precision Physics and Fundamental Constants

Similar presentations


Presentation on theme: "Workshop on Precision Physics and Fundamental Constants"β€” Presentation transcript:

1 Workshop on Precision Physics and Fundamental Constants
B.P. Konstantinov PETERSBURG NUCLEAR PHYSICS INSTITUTE Constrains on variations of fundamental constants obtained from primordial deuterium concentration M.S. Onegin Workshop on Precision Physics and Fundamental Constants St. Petersburg , Pulkovo 2013

2 BBN took place during the first few minutes after Big Bang
BBN took place during the first few minutes after Big Bang. The universe was initially (first seconds after BB) extremely hot and only elementary particles exist: proton (p), neutron (n), electron/positron (eΒ±), neutrinos and antineutrinos (Ξ½, Ξ½ ) The following reactions were kept in statistical equilibrium: n→𝑝+𝑒-+ Ξ½ e , n+Ξ½e ↔ 𝑝+𝑒- , n+ 𝑒 + ↔𝑝+ Ξ½ e . (n/𝑝)= 𝑒 βˆ’ 𝑄 𝑛𝑝 / π‘˜ 𝐡 𝑇 𝑄 𝑛𝑝 = π‘š 𝑛 βˆ’ π‘š 𝑝 𝑐 2 =1.29 MeV

3 n + 𝑝↔ D+Ξ³ ; Q= MeV Ξ· 10 = ( 𝑛 𝐡 𝑛 Ξ³ ) Ξ·10

4 π‘Œ= 4𝑦 1+4𝑦 β‰ˆ 2 𝑛/𝑝 𝐡𝐡𝑁 1+ 2 𝑛/𝑝 𝐡𝐡𝑁 β‰ˆ 1 4 𝑦= 𝑛 𝐻𝑒 / 𝑛 𝐻
π‘Œ= 4𝑦 1+4𝑦 β‰ˆ 2 𝑛/𝑝 𝐡𝐡𝑁 𝑛/𝑝 𝐡𝐡𝑁 β‰ˆ 1 4 𝑦= 𝑛 𝐻𝑒 / 𝑛 𝐻

5 𝑑𝑙𝑛 π‘Œ π‘Ž /𝑑𝑙𝑛 𝑋 𝑖 T. Dent, S. Stern & C. Wetterich Phys. Rev. D 76, (2007) Xi D 4He GN 0.94 0.36 Ξ± 2.3 0.0 Ο„n 0.41 0.73 me -0.16 -0.71 QN 0.83 1.55 mN 3.5 -0.07 𝐡 𝐷 -2.8 0.68 𝐡 𝑇 -0.22 𝐡 𝐻𝑒3 -2.1 𝐡 𝐻𝑒4 -0.01 Ξ· -1.6 0.04 Results were obtained using Kawano 1992 code (Report No. FERMILAB-PUB-92/04-A)

6 BBN predictions Experiment: 4He Y = – K.A. Olive & E.D. Skillman Astrophys. J. 617, 29 (2004) (D/H) = (2.83 Β± 0.052)Β·10-5 J.M. O’Meara et al Astrophys. J. 649, L61 (2006) WMAP: πœ‚ 10 =(6.14Β± 0.25) )Β· yellow Planck satellite 2013 results: πœ‚ 10 =(6.047Β± 0.090) )Β· red

7 Boundaries on ED variation
βˆ’10.9Γ— 10 βˆ’2 < βˆ† 𝐸 𝐷 𝐸 𝐷 <3.6Γ— 10 βˆ’2 βˆ’9.4Γ— 10 βˆ’2 < βˆ† 𝐸 𝐷 𝐸 𝐷 <6.6Γ— 10 βˆ’2 βˆ’9.4Γ— 10 βˆ’2 < βˆ† 𝐸 𝐷 𝐸 𝐷 <3.6Γ— 10 βˆ’2

8 ED dependence from mΟ€ Deuteron is a bound state of p-n system with quantum numbers: JΟ€ = 1+ Deuteron is only barely bound: ED = MeV Nucleon-Nucleon on-shell momentum-space amplitude in general have the following form: Where:

9 Calculation of effective N-N potential based on effective chiral perturbation theory
Starting point for the derivation of the N-N interaction is an effective chiral Ο€N Lagrangian which is given by a series of terms of increasing chiral dimension: Here

10 Main one- and two-pion contributions to NN interaction
N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625 (1997) 758

11 N-N interaction renormalization with mΟ€
The value of d16 can be obtained from the fit to the process Ο€N ππN:

12 Deuteron binding energy
The wave function of the bound state is obtained from the homogeneous equation: As an input NN potential we use Idaho accurate nucleon-nucleon potential: D.R. Entem, R. Machleidt, Phys. Lett. B 524 (2002) p.93 It’s obtained within third order of chiral perturbation theory and describe rather well the phase shifts of NN scattering. It also describe precisely the deuteron properties: Idaho Empirical Binding energy (MeV) (9) Asympt. S state (fm-1/2) 0.8846 0.8846(9) Asympt. D/S state 0.0256 0.0256(4) Deuteron radius (fm) 1.9756 1.9754(9) Quadrupole momentum (fm2) 0.284 0.2859(3)

13 Results βˆ† 𝐸 𝐷 𝐸 𝐷 =βˆ’π‘Ÿ βˆ† π‘š Ο€ π‘š Ο€ π‘Ÿ=5.4Β±0.4 π‘š Ο€ 2 ~( π‘š 𝑒 + π‘š 𝑑 ) Ξ› 𝑄𝐢𝐷
βˆ† 𝐸 𝐷 𝐸 𝐷 =βˆ’π‘Ÿ βˆ† π‘š Ο€ π‘š Ο€ π‘Ÿ=5.4Β±0.4 βˆ’7Γ— 10 βˆ’3 < βˆ† π‘š Ο€ π‘š Ο€ <1.9Γ— 10 βˆ’2 π‘š Ο€ 2 ~( π‘š 𝑒 + π‘š 𝑑 ) Ξ› 𝑄𝐢𝐷 βˆ† 𝐸 𝐷 𝐸 𝐷 =βˆ’ π‘Ÿ 2 βˆ† π‘š π‘ž π‘š π‘ž βˆ’ βˆ†Ξ± Ξ± βˆ’1.4Γ— 10 βˆ’2 < βˆ† π‘š π‘ž π‘š π‘ž <3.8Γ— 10 βˆ’2

14 Thank you for your attention!

15 Comparing with previous results
V.V. Flambaum, E.V. Shuryak. Phys.Rev. D 65 (2002) E. Epelbaum, U.G. Meissner and W. Gloeckle, Nucl. Phys. A 714 (2003) 535 S.R. Beane & M.J. Savage. Nucl. Phys. A 717 (2003) 91


Download ppt "Workshop on Precision Physics and Fundamental Constants"

Similar presentations


Ads by Google