Download presentation
Presentation is loading. Please wait.
1
Micropattern Gas Detectors
Oleg Bouianov, M.I.T. Cambridge KEK, Tsukuba, 21 February 2004 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
2
Oleg Bouianov, M.I.T. Cambridge
Outline Introduction to micropattern gas detectors. MSGC, GEM, MICORMEGAS, MSHP. 3D simulations of gas detectors. Limitations of micropattern detectors. Imperfections of detector fabrication. µPIC, MDOT. New materials and fabrication methods. MIPA. Trends in micropattern detector development. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
3
Processes in Gas Detectors
Ionisation Charge Transport Charge Multiplication Signal Formation -0.015 -0.01 -0.005 0.02 0.04 0.06 0.08 0.1 x 10 -5 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
4
History and introduction to micropattern gas detectors
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
5
MWPC: Multi-Wire Prop. Chamber
Georges Charpak Nobel Prize in Physics 1992 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
6
Limitations of MWPC F.Sauli, APS-DPF2000 Counting rate is limited by space charge to ~104 Hz/mm2 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
7
Oleg Bouianov, M.I.T. Cambridge
Aging of MWPC Anode wire deposits 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
8
Oleg Bouianov, M.I.T. Cambridge
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
9
MSGC: Micro-Strip Gas Chamber
A. Oed, NIM A 263 (1988) 351. Drift electrode 200 µm Anode strip Glass support Back plane Cathode strips 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
10
Oleg Bouianov, M.I.T. Cambridge
MSGC vs MWPC 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
11
Oleg Bouianov, M.I.T. Cambridge
MSGC Dimensions 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
12
Oleg Bouianov, M.I.T. Cambridge
MSGC: Discharges FULL BREAKDOWN MICRODISCHARGES F.Sauli, IEEE NSS 2002 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
13
Oleg Bouianov, M.I.T. Cambridge
MSGC: Discharges F.Sauli, IEEE NSS 2002 For detection of minimum ionizing tracks a gain ~ 3000 is needed In presence of heavily ionizing particles background, the discharge probability is large ON EXPOSURE TO a PARTICLES 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
14
Oleg Bouianov, M.I.T. Cambridge
Aging of MSGC R. Bouclier et al, NIM A381(1996) 289 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
15
Oleg Bouianov, M.I.T. Cambridge
MICROMEGAS Thin-gap parallel plate chamber Y. Giomataris et al, Nucl. Instr. and Meth. A376 (1996) 29 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
16
Oleg Bouianov, M.I.T. Cambridge
MICROMEGAS 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
17
GEM: Gas Electron Multiplier
F.Sauli, CERN 1997 GEM Dimensions 45μm 75 μm 140 μm 50 μm Copper Kapton 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
18
Oleg Bouianov, M.I.T. Cambridge
GEM operation Particle traversing the detector volume Ionization Drift of primary charges Avalanche multiplication 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
19
Oleg Bouianov, M.I.T. Cambridge
Cascaded GEM GEM #1 GEM #2 -0.015 -0.01 -0.005 0.02 0.04 0.06 0.08 0.1 x 10 -5 Pad readout 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
20
Cascaded GEM: Simulated
Strengths of simulations: Each electron and ion can be individually traced. Nano-scale study of all major processes. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
21
Features of GEM-based Detectors
Flexibility. Charge multiplication and signal formation are separated Gas gain can be optimised by cascading GEMs Freedom in selecting a signal readout geometry Only signal due to electrons is seen. Ion feedback suppression. Inexpensive to manufacture in large area. High-rate operation. Gain uniformity over large detector areas. Stability at high gas gains (cascaded). 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
22
Micro-Hole and Strip Plate (MHSP)
A cross between MSGC and GEM J.M. Maia et al., IEEE Trans. Nucl. Sci. NS-49 (3) (2002) 875 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
23
Oleg Bouianov, M.I.T. Cambridge
MHSP Operation hv photocathode Features: Double-stage amplification Low ion feedback Low UV photon feedback cathode mesh 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
24
3D Simulation of Gas Detectors
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
25
Why 3D Simulation? 2D: Electric field lines 3D: Field strength
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
26
Why 3D Simulation? 2D: Avalanche 3D: Avalanche and charge sharing
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
27
Oleg Bouianov, M.I.T. Cambridge
Simulation Flow Simulation Tools Maxwell FEM 3D Electric Field Simulator Garfield 3D drift chambers simulation Heed gas ionisation by particles Magboltz electron transport properties in gas mixtures Maxwell Garfield 3D Geometry Model Generate Data Charge Transport Magboltz Mesh Generation Gas Data Track Particle Field Calculation Heed Ionisation Data 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
28
FEM Modelling of e-Field
3D Detector Model Mesh Generation FEM Field Calculation 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
29
GEM Simulation Studies
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
30
Early effort on GEM simulations
Setting up simulation environment (1999). Validation and comparison with published measurement results. O. Bouianov et al., “Progress in GEM simulation”, Nuclear Instruments and Methods in Physics Research A, 450 (2000), Study of charge losses. O. Bouianov et al., “Foil geometry effects on GEM characteristics”, Nuclear Instruments and Methods in Physics Research A, 458 (2001), Study of gas gain instabilities. O. Bouianov et al., “Charging-up effects in the gas electron multiplier”, Research reports B24, Laboratory of Computational Engineering, Helsinki University of Technology, 2001, ISBN 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
31
Oleg Bouianov, M.I.T. Cambridge
Studied geometries (a) cylindrical (b) biconical (c) conical 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
32
Oleg Bouianov, M.I.T. Cambridge
Detector modelling Minimisation of detector volume for various hole distribution patterns: (a) hexagonal (b) rectangular 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
33
Study of charge transport in GEM
3D model of GEM. E-field calculation. Gas properties. Primary charge generation. Propagation of charges (with or without diffusion). 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
34
Deposition of charges (losses)
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
35
Modelling of dielectric charging
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
36
Modelling of dielectric charging
Distribution of electric potentials in GEM: initial modified by charging 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
37
Comparison with measurements
The alteration of the effective gas gain: measured (dots) and simulated (solid curve). R. Bouclier et al., Nucl. Instr. and Meth. A, 396 (1997), 50. time constants 1/ 2 =6 total equivalen resistance R≈150∙109 Ω 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
38
Typical characteristics of gaseous micropattern detectors
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
39
Shortcomings of gaseous micropattern devices
discharges at high count rates and gains low effective gas gain space-charge effects time-dependent gain variation (dielectric charging) slow response due to ions gain non-uniformity across detector area aging limited energy resolution (>20% E/E FWHM) … 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
40
Discharges in micropattern detectors
A. Bressan et al, NIM A 424 (1999) 321 Systematic study of discharges by F.Sauli at CERN. Irradiation: high-rate soft X-rays + heavily ionizing alpha particles. All single-stage micropattern detectors show similar limitation due to discharges at a gain of few thousand. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
41
Imperfections of detector fabrication
Fabrication process limitations: Layer-to-layer registration Photolithography errors Isotropic etching process Electrode shape errors (undercut) Dielectric shape errors 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
42
Oleg Bouianov, M.I.T. Cambridge
GEM: close look CERN Imperfections of wet etching and RIE. CERN Fuchigami Co 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
43
Modelling of realistic structures
The effect of MPGD fabrication imperfections has been studied. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
44
Modelling of realistic structures
Smoother electrode structure. Twofold decrease of the field strength. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
45
Fabrication techniques: a comparison of results
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
46
MDOT: Micro – Dot Chamber
A remarkable detector with high gain and low discharge rate Metal electrodes on silicon: microelectronic fabrication process S. Biagi et al, Nucl. Instr. and Meth. A361 (1995) 72 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
47
Oleg Bouianov, M.I.T. Cambridge
MDOT performance No discharges observed at high rates with alphas up to the gains 2104 A. Bressan et al, NIM A 424 (1999) 321 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
48
µPIC: Micro Pixel Chamber
New micrpattern detector Developed at Kyoto University Similar to MDOT PCB technology Discharges at gains of few thousand. A. Ochi et al., Nucl. Instr. and Meth. A 471 (2001) 264. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
49
Oleg Bouianov, M.I.T. Cambridge
µPIC vs MDOT µPIC MDOT Technology Advanced PCB Microelectronic Electrode thickness 10 µm ~ 1 µm Feature tolerances > 10 µm ~ 0.5 µm Performance average exceptional Reasons for different performance: Technology imperfections? … T.Nagayoshi, Kyoto group 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
50
New Materials and Manufacturing Technologies
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
51
Scale-up: “macropattern”
LC TPC R&D: LEM or Macro-GEM “Macro-GEM” structure is manufactured and its performance studied at MIT/LNS. Macro-GEM geometry Hole pitch 2.5 mm Max. hole diameter 1.2 mm Min. hole diameter 0.6 mm Copper thickness 50 m Dielectric thickness (G10) 150 m 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
52
Microstructure detectors
Scale-down Microstructure detectors 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
53
Photoplastics for MEMS
Polyimide Low aspect ratio (< 3:1) ~80 m thick SU-8 epoxy PR – popular material for MEMS microfabrication High UV transparency High aspect ratio (>10:1) Straight walls > 500 m thick spin coated 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
54
Microfabrication with photoplastics
Spin coating SU-8 process 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
55
Examples of SU-8 microstructures
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
56
Molding of metal structures
Results in precise metal shapes with smooth surfaces. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
57
Early attempts to produce gas detectors with MEMS techniques
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
58
Oleg Bouianov, M.I.T. Cambridge
MSGC type structures M. Key CNM, Barcelona 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
59
MIPA: Micro-Pin Array Uses new materials and fabrication processes
Matrix of individual needle proportional counters P. Rehak et al, IEEE Trans. Nucl. Sci. NS-47(2000)1426 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
60
SU-8 Radiation Hardness
M. Key CNM, Barcelona 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
61
Oleg Bouianov, M.I.T. Cambridge
Not a Conclusion 1928 1988 2000 G e n r a t i o s f g u d c 3 rd generation 2 nd generation 1 s t g e n r a i o 4 × 10 2 3 D e t c o r s l u i n , m 5 50 500 S g d a v 1 st gene- ration 2 nd gene- ration 3 rd gene- ration 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
62
Oleg Bouianov, M.I.T. Cambridge
Thank you … 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.