Presentation is loading. Please wait.

Presentation is loading. Please wait.

Micropattern Gas Detectors

Similar presentations


Presentation on theme: "Micropattern Gas Detectors"— Presentation transcript:

1 Micropattern Gas Detectors
Oleg Bouianov, M.I.T. Cambridge KEK, Tsukuba, 21 February 2004 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

2 Oleg Bouianov, M.I.T. Cambridge
Outline Introduction to micropattern gas detectors. MSGC, GEM, MICORMEGAS, MSHP. 3D simulations of gas detectors. Limitations of micropattern detectors. Imperfections of detector fabrication. µPIC, MDOT. New materials and fabrication methods. MIPA. Trends in micropattern detector development. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

3 Processes in Gas Detectors
Ionisation Charge Transport Charge Multiplication Signal Formation -0.015 -0.01 -0.005 0.02 0.04 0.06 0.08 0.1 x 10 -5 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

4 History and introduction to micropattern gas detectors
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

5 MWPC: Multi-Wire Prop. Chamber
Georges Charpak Nobel Prize in Physics 1992 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

6 Limitations of MWPC F.Sauli, APS-DPF2000 Counting rate is limited by space charge to ~104 Hz/mm2 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

7 Oleg Bouianov, M.I.T. Cambridge
Aging of MWPC Anode wire deposits 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

8 Oleg Bouianov, M.I.T. Cambridge
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

9 MSGC: Micro-Strip Gas Chamber
A. Oed, NIM A 263 (1988) 351. Drift electrode 200 µm Anode strip Glass support Back plane Cathode strips 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

10 Oleg Bouianov, M.I.T. Cambridge
MSGC vs MWPC 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

11 Oleg Bouianov, M.I.T. Cambridge
MSGC Dimensions 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

12 Oleg Bouianov, M.I.T. Cambridge
MSGC: Discharges FULL BREAKDOWN MICRODISCHARGES F.Sauli, IEEE NSS 2002 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

13 Oleg Bouianov, M.I.T. Cambridge
MSGC: Discharges F.Sauli, IEEE NSS 2002 For detection of minimum ionizing tracks a gain ~ 3000 is needed In presence of heavily ionizing particles background, the discharge probability is large ON EXPOSURE TO a PARTICLES 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

14 Oleg Bouianov, M.I.T. Cambridge
Aging of MSGC R. Bouclier et al, NIM A381(1996) 289 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

15 Oleg Bouianov, M.I.T. Cambridge
MICROMEGAS Thin-gap parallel plate chamber Y. Giomataris et al, Nucl. Instr. and Meth. A376 (1996) 29 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

16 Oleg Bouianov, M.I.T. Cambridge
MICROMEGAS 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

17 GEM: Gas Electron Multiplier
F.Sauli, CERN 1997 GEM Dimensions 45μm 75 μm 140 μm 50 μm Copper Kapton 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

18 Oleg Bouianov, M.I.T. Cambridge
GEM operation Particle traversing the detector volume Ionization Drift of primary charges Avalanche multiplication 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

19 Oleg Bouianov, M.I.T. Cambridge
Cascaded GEM GEM #1 GEM #2 -0.015 -0.01 -0.005 0.02 0.04 0.06 0.08 0.1 x 10 -5 Pad readout 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

20 Cascaded GEM: Simulated
Strengths of simulations: Each electron and ion can be individually traced. Nano-scale study of all major processes. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

21 Features of GEM-based Detectors
Flexibility. Charge multiplication and signal formation are separated Gas gain can be optimised by cascading GEMs Freedom in selecting a signal readout geometry Only signal due to electrons is seen. Ion feedback suppression. Inexpensive to manufacture in large area. High-rate operation. Gain uniformity over large detector areas. Stability at high gas gains (cascaded). 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

22 Micro-Hole and Strip Plate (MHSP)
A cross between MSGC and GEM J.M. Maia et al., IEEE Trans. Nucl. Sci. NS-49 (3) (2002) 875 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

23 Oleg Bouianov, M.I.T. Cambridge
MHSP Operation hv photocathode Features: Double-stage amplification Low ion feedback Low UV photon feedback cathode mesh 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

24 3D Simulation of Gas Detectors
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

25 Why 3D Simulation? 2D: Electric field lines 3D: Field strength
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

26 Why 3D Simulation? 2D: Avalanche 3D: Avalanche and charge sharing
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

27 Oleg Bouianov, M.I.T. Cambridge
Simulation Flow Simulation Tools Maxwell FEM 3D Electric Field Simulator Garfield 3D drift chambers simulation Heed gas ionisation by particles Magboltz electron transport properties in gas mixtures Maxwell Garfield 3D Geometry Model Generate Data Charge Transport Magboltz Mesh Generation Gas Data Track Particle Field Calculation Heed Ionisation Data 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

28 FEM Modelling of e-Field
3D Detector Model Mesh Generation FEM Field Calculation 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

29 GEM Simulation Studies
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

30 Early effort on GEM simulations
Setting up simulation environment (1999). Validation and comparison with published measurement results. O. Bouianov et al., “Progress in GEM simulation”, Nuclear Instruments and Methods in Physics Research A, 450 (2000), Study of charge losses. O. Bouianov et al., “Foil geometry effects on GEM characteristics”, Nuclear Instruments and Methods in Physics Research A, 458 (2001), Study of gas gain instabilities. O. Bouianov et al., “Charging-up effects in the gas electron multiplier”, Research reports B24, Laboratory of Computational Engineering, Helsinki University of Technology, 2001, ISBN 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

31 Oleg Bouianov, M.I.T. Cambridge
Studied geometries (a) cylindrical (b) biconical (c) conical 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

32 Oleg Bouianov, M.I.T. Cambridge
Detector modelling Minimisation of detector volume for various hole distribution patterns: (a) hexagonal (b) rectangular 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

33 Study of charge transport in GEM
3D model of GEM. E-field calculation. Gas properties. Primary charge generation. Propagation of charges (with or without diffusion). 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

34 Deposition of charges (losses)
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

35 Modelling of dielectric charging
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

36 Modelling of dielectric charging
Distribution of electric potentials in GEM: initial modified by charging 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

37 Comparison with measurements
The alteration of the effective gas gain: measured (dots) and simulated (solid curve). R. Bouclier et al., Nucl. Instr. and Meth. A, 396 (1997), 50. time constants 1/ 2 =6 total equivalen resistance R≈150∙109 Ω 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

38 Typical characteristics of gaseous micropattern detectors
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

39 Shortcomings of gaseous micropattern devices
discharges at high count rates and gains low effective gas gain space-charge effects time-dependent gain variation (dielectric charging) slow response due to ions gain non-uniformity across detector area aging limited energy resolution (>20% E/E FWHM) 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

40 Discharges in micropattern detectors
A. Bressan et al, NIM A 424 (1999) 321 Systematic study of discharges by F.Sauli at CERN. Irradiation: high-rate soft X-rays + heavily ionizing alpha particles. All single-stage micropattern detectors show similar limitation due to discharges at a gain of few thousand. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

41 Imperfections of detector fabrication
Fabrication process limitations: Layer-to-layer registration Photolithography errors Isotropic etching process Electrode shape errors (undercut) Dielectric shape errors 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

42 Oleg Bouianov, M.I.T. Cambridge
GEM: close look CERN Imperfections of wet etching and RIE. CERN Fuchigami Co 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

43 Modelling of realistic structures
The effect of MPGD fabrication imperfections has been studied. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

44 Modelling of realistic structures
Smoother electrode structure. Twofold decrease of the field strength. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

45 Fabrication techniques: a comparison of results
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

46 MDOT: Micro – Dot Chamber
A remarkable detector with high gain and low discharge rate Metal electrodes on silicon: microelectronic fabrication process S. Biagi et al, Nucl. Instr. and Meth. A361 (1995) 72 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

47 Oleg Bouianov, M.I.T. Cambridge
MDOT performance No discharges observed at high rates with alphas up to the gains 2104 A. Bressan et al, NIM A 424 (1999) 321 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

48 µPIC: Micro Pixel Chamber
New micrpattern detector Developed at Kyoto University Similar to MDOT PCB technology Discharges at gains of few thousand. A. Ochi et al., Nucl. Instr. and Meth. A 471 (2001) 264. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

49 Oleg Bouianov, M.I.T. Cambridge
µPIC vs MDOT µPIC MDOT Technology Advanced PCB Microelectronic Electrode thickness 10 µm ~ 1 µm Feature tolerances > 10 µm ~ 0.5 µm Performance average exceptional Reasons for different performance: Technology imperfections? T.Nagayoshi, Kyoto group 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

50 New Materials and Manufacturing Technologies
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

51 Scale-up: “macropattern”
LC TPC R&D: LEM or Macro-GEM “Macro-GEM” structure is manufactured and its performance studied at MIT/LNS. Macro-GEM geometry Hole pitch 2.5 mm Max. hole diameter 1.2 mm Min. hole diameter 0.6 mm Copper thickness 50 m Dielectric thickness (G10) 150 m 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

52 Microstructure detectors
Scale-down Microstructure detectors 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

53 Photoplastics for MEMS
Polyimide Low aspect ratio (< 3:1) ~80 m thick SU-8 epoxy PR – popular material for MEMS microfabrication High UV transparency High aspect ratio (>10:1) Straight walls > 500 m thick spin coated 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

54 Microfabrication with photoplastics
Spin coating SU-8 process 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

55 Examples of SU-8 microstructures
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

56 Molding of metal structures
Results in precise metal shapes with smooth surfaces. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

57 Early attempts to produce gas detectors with MEMS techniques
21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

58 Oleg Bouianov, M.I.T. Cambridge
MSGC type structures M. Key CNM, Barcelona 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

59 MIPA: Micro-Pin Array Uses new materials and fabrication processes
Matrix of individual needle proportional counters P. Rehak et al, IEEE Trans. Nucl. Sci. NS-47(2000)1426 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

60 SU-8 Radiation Hardness
M. Key CNM, Barcelona 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

61 Oleg Bouianov, M.I.T. Cambridge
Not a Conclusion 1928 1988 2000 G e n r a t i o s f g u d c 3 rd generation 2 nd generation 1 s t g e n r a i o 4 × 10 2 3 D e t c o r s l u i n , m 5 50 500 S g d a v 1 st gene- ration 2 nd gene- ration 3 rd gene- ration 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

62 Oleg Bouianov, M.I.T. Cambridge
Thank you … 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge


Download ppt "Micropattern Gas Detectors"

Similar presentations


Ads by Google