Presentation is loading. Please wait.

Presentation is loading. Please wait.

Interesting Fact of the Day

Similar presentations


Presentation on theme: "Interesting Fact of the Day"β€” Presentation transcript:

1 Interesting Fact of the Day
What percentage of students say that they β€œenjoy” school?

2 Section 9.3 Day 1 Transformations of Quadratic Functions
Algebra 1

3 Learning Targets Define transformation, translation, dilation, and reflection Identify the parent graph of a quadratic function Graph a vertical and horizontal translation of the quadratic graph Describe how the leading coefficient of a quadratic graph changes the dilation of the parent graph Graph a reflection of a quadratic graph Identify the quadratic equation from a graph

4 Key Terms and Definitions
Transformation: Changes the position or size of a figure Translation: A specific type of transformation that moves a figure up, down, left, or right.

5 Key Terms and Definitions
Dilation: A specific type of transformation that makes the graph narrower or wider than the parent graph Reflection: Flips a figure across a line

6 Key Terms and Definitions
Parent Quadratic Graph: 𝑓 π‘₯ = π‘₯ 2 General Vertex Form: 𝑓 π‘₯ =π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜

7 Horizontal Translations: Example 1
Given the function 𝑓 π‘₯ = π‘₯βˆ’2 2 A) Describe how the function relates to the parent graph Horizontal shift 2 units to the right B) Graph a sketch of the function

8 Horizontal Translations
In vertex form 𝑓 π‘₯ =π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜, β„Ž represents the horizontal translation from the parent graph. To the Right: 𝑓 π‘₯ =π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜ of β„Ž units To the Left: 𝑓 π‘₯ =π‘Ž π‘₯+β„Ž 2 +π‘˜ of β„Ž units

9 Vertical Translations: Example 2
Given the function β„Ž π‘₯ = π‘₯ 2 +3 A) Describe how the function relates to the parent graph Vertical shift 3 units upward B) Graph a sketch of the function

10 Vertical Translations
In vertex form 𝑓 π‘₯ =π‘Ž π‘₯βˆ’β„Ž 2 + π‘˜, π‘˜ represents the vertical translation from the parent graph. Upward: 𝑓 π‘₯ =π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜ of π‘˜ units Downward: 𝑓 π‘₯ =π‘Ž π‘₯βˆ’β„Ž 2 βˆ’π‘˜ of π‘˜ units

11 Translations: Example 3
Given the function 𝑔 π‘₯ = π‘₯+1 2 A) Describe how the function relates to the parent graph Horizontal Shift one unit to the left B) Graph a sketch of the function

12 Translations: Example 4
Given the function 𝑔 π‘₯ = π‘₯ 2 βˆ’4 A) Describe how the function relates to the parent graph Vertical shift 4 units downward B) Graph a sketch of the function

13 Stretched Vertically: Example 1
Given the function β„Ž π‘₯ = 1 2 π‘₯ 2 A) Describe how the function relates to the parent graph Stretched Horizontally B) Graph a sketch of the function

14 Compressed Vertically: Example 2
Given the function 𝑔 π‘₯ =3 π‘₯ 2 +2 A) Describe how the function relates to the parent graph Compressed Horizontally Vertical Shift 2 units upward B) Graph a sketch of the function

15 Dilations In vertex form 𝑓 π‘₯ =π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜, π‘Ž represents a dilation from the parent graph. Compressed Vertically: π‘Ž >1 Stretched Vertically: 0< π‘Ž <1

16 Dilation: Example 3 Given the function 𝑗 π‘₯ = 1 3 π‘₯ 2 +2
A) Describe how the function relates to the parent graph Stretched Horizontally Vertical Shift 2 units upward B) Graph a sketch of the function

17 Dilation: Example 4 Given the function π‘˜ π‘₯ =2 π‘₯ 2 βˆ’12
A) Describe how the function relates to the parent graph Compressed Horizontally Vertical Shift 12 units downward B) Graph a sketch of the function

18 Reflections Across the x-axis: Example 1
Given the function 𝑔 π‘₯ =βˆ’ π‘₯ 2 βˆ’3 A) Describe how the function relates to the parent graph Reflection across the x-axis Vertical Shift 3 units downward B) Graph a sketch of the function

19 Reflections Across the x-axis
In vertex form 𝑓 π‘₯ =π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜, the sign of π‘Ž can represent a reflection across the x-axis from the parent graph. In particular, π‘Ž must be a negative number

20 Reflections Across the y-axis: Example 2
Given the function 𝑓 π‘₯ =2 βˆ’π‘₯ 2 βˆ’9 A) Describe how the function relates to the parent function Reflection across the y-axis Vertical Shift 9 units downward B) Graph a sketch of the function

21 Reflections Across the y-axis
In vertex form 𝑓 π‘₯ =π‘Ž π‘₯βˆ’β„Ž 2 +π‘˜, the sign of π‘₯ can represent a reflection across the y-axis from the parent graph. In particular, π‘₯ must be negative

22 Reflections: Example 3 Given β„Ž π‘₯ =βˆ’2 π‘₯βˆ’1 2
A) Describe how the function relates to the parent graph Reflection across the x-axis Compressed Horizontally Horizontal Shift one unit to the right B) Graph a sketch of the function

23 Reflections: Example 4 Given the function 𝑔 π‘₯ = βˆ’π‘₯ 2 +2
A) Describe how the function relates to the parent graph Reflection across the y-axis Vertical shift 2 units upward B) Graph a sketch of the function

24 Identifying From a Graph Procedure
1. Check for a horizontal or vertical translation 2. Check for a reflection across the x-axis 3. Check for a dilation

25 Identifying: Example 1 Which is an equation for the function shown in the graph? A) 𝑦= 1 2 π‘₯ 2 βˆ’5 B) 𝑦=βˆ’ 1 2 π‘₯ 2 +5 C) 𝑦=βˆ’2 π‘₯ 2 βˆ’5 D) 𝑦=2 π‘₯ 2 +5

26 Identifying: Example 3 Which equation is shown for the function in the graph? A) 𝑦=βˆ’3 π‘₯ 2 +2 B) 𝑦=3 π‘₯ 2 +2 C) 𝑦=βˆ’ 1 3 π‘₯ 2 βˆ’2 D) 𝑦=βˆ’ 1 3 π‘₯ 2 βˆ’2

27 Identifying: example 4 Which is an equation for the function shown in the graph? A) 𝑦= π‘₯ B) 𝑦= π‘₯βˆ’ C) 𝑦=βˆ’ π‘₯+2 2 βˆ’2 D) 𝑦=βˆ’ π‘₯βˆ’2 2 βˆ’2


Download ppt "Interesting Fact of the Day"

Similar presentations


Ads by Google