Download presentation
Presentation is loading. Please wait.
1
Find the Features of Noses
Jia Wu 11/25/2008
2
Nasal Alae Local minimal Large slope
Nasal Alae feature= 2*width of nasal ala/ width of nose Nostril lateral view
4
Find bulbous nasal tip π/4 = 0.785 0.5
5
F14_9_1_1 F14_0_0_1
6
0.51 0.38 0.61 0.41 Average value for labeled as bulbous tip
19/20 = 0.95 9/20 = 0.45 19/Depth of nose 19/Depth of nose Average value for labeled as bulbous tip Average value for those without bulbous tip label 0.51 0.38 Average value for labeled as bulbous tip(new) Average value for those without bulbous tip label 0.61 0.41
7
Proportion of upper part Proportion of lower part
π/4 = 0.785 1/4 = 0.25 3/4 = 0.75
8
Compare with triangle F14_0_0_1 F14_9_1_1 Overlap of some information
9
Bulbous nasal tip(Top 10)
Data Carrie Anne Mark Predicted severeness F1_11_0_6 2 1 0.8 M7_0_0_1 NoData 0.69 F3_0_0_1 0.90 0.70 M5_0_0_1 0.84 F18_0_0_1 0.83 F10_0_0_2 0.78 0.71 F4_0_0_2 0.76 0.75 F31_0_0_1 0.74 F13_0_0_1 0.72 0.89 0.5
10
Bulbous nasal tip(Top 10,ranked by severeness)
Data Carrie Anne Mark severeness Predicted F13_0_0_1 2 1 0.89 0.72 M5_0_0_1 NoData 0.84 F18_0_0_1 0.83 F1_11_0_6 0.8 F4_0_0_2 0.75 0.76 F31_0_0_1 0.74 F3_0_0_1 0.70 0.90 F10_0_0_2 0.71 0.78 M7_0_0_1 0.69 0.5 coincidence
11
Features 1. height of nose/height of face (Deleted) ----> Depth of nose/depth of face 2. width of nose/width of face 3. width of nose/height of nose 4. width of top nose /width of bottom nose 5. angle top-side-side 6. width of top nose/ width of face 7. bulbous information 8. bulbous triangle compare infomation 9. bulbous upper part information 10. angle bottom-tip-top 11. angle side-tip-side 12. width of nasal alae/ width of nose 13. width of nasal alae/ width of face
12
W86, NaiveBayes Correctly Classified Instances 69 80.2326 %
Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure Class === Confusion Matrix === a b <-- classified as 35 8 | a = 0(Affected) 9 34 | b = 1(Control)
13
Selected attributes number of folds (%) attribute 0( 0 %) 1 sex
0( 0 %) 2 year 0( 0 %) 3 Tp 0( 0 %) 4 Wp 0( 0 %) 5 WH 0( 0 %) 6 WTNWN 4( 40 %) 7 AngleTopSide (Tubular looking) 0( 0 %) 8 WTNp 4( 40 %) 9 Bulbous1 10(100 %) 10 Bulbous2 10(100 %) 11 BulbousUp 0( 0 %) 12 ABottomTipTop 0( 0 %) 13 ALeftTipRight 1( 10 %) 14 Pinched1 (width of nasal alae/ width of nose) 0( 0 %) 15 Pinched2
14
Bulbous Nasal Tip bulbous severeness Compare with triangle
bulbous upper part Unaffected Affected
15
Angle top-side-side tubular appearance Unaffected Affected
16
Nasal Alae Unaffected Affected
17
Analysing: F_measure Datasets: 8 Resultsets: 4
Confidence: 0.05 (two tailed) Date: Dataset (1) W86_25D_ | (2) W86_3 (3) W86_n (4) W86_f rules.ZeroR (100) | rules.NNge (100) | * rules.JRip (100) | * trees.J (100) | * lazy.IB (100) | v lazy.IBk (100) | v functions.SMO (400) | v bayes.NaiveBayes (100) | * (v/ /*) | (1/7/0) (1/3/4) (1/7/0) Skipped: Key: (1) W86_25D_pca (2) W86_3Dsnp_cut_pca (3) W86_noseRect_pca (4) W86_features3_4-unsupervised.attribute.Remove-R3-4
18
Analysing: IR_precision
Datasets: 8 Resultsets: 4 Confidence: 0.05 (two tailed) Date: Dataset (1) W86_25D_ | (2) W86_3 (3) W86_n (4) W86_f rules.ZeroR (100) | rules.NNge (100) | * rules.JRip (100) | * trees.J (100) | * lazy.IB (100) | lazy.IBk (100) | functions.SMO (400) | bayes.NaiveBayes (100) | * (v/ /*) | (0/8/0) (0/4/4) (0/8/0) Skipped: Key: (1) W86_25D_pca (2) W86_3Dsnp_cut_pca (3) W86_noseRect_pca (4) W86_features3_4-unsupervised.attribute.Remove-R3-4
19
Analysing: IR_recall Datasets: 8 Resultsets: 4
Confidence: 0.05 (two tailed) Date: Dataset (1) W86_25D_ | (2) W86_3 (3) W86_n (4) W86_f rules.ZeroR (100) | rules.NNge (100) | rules.JRip (100) | trees.J (100) | * lazy.IB (100) | v v lazy.IBk (100) | v v v functions.SMO (400) | v bayes.NaiveBayes (100) | * (v/ /*) | (1/7/0) (2/4/2) (3/5/0) Skipped: Key: (1) W86_25D_pca (2) W86_3Dsnp_cut_pca (3) W86_noseRect_pca (4) W86_features3_4-unsupervised.attribute.Remove-R3-4
20
Analysing: IR_precision
Datasets: 8 Resultsets: 4 Confidence: 0.05 (two tailed) Date: Dataset (1) ALL_25D_ | (2) ALL_3 (3) ALL_n (4) InfoF rules.ZeroR (100) | rules.NNge (100) | * rules.JRip (100) | * trees.J (100) | * lazy.IB (100) | v lazy.IBk (100) | functions.SMO (100) | bayes.NaiveBayes (100) | * (v/ /*) | (0/8/0) (0/4/4) (1/7/0) Skipped: Key: (1) ALL_25D_pca (2) ALL_3Dsnp_pca (3) ALL_noseRect_pca (4) InfoFmeasures3_4-unsupervised.attribute.Remove-R3-4
21
Analysing: IR_recall Datasets: 8 Resultsets: 4 Confidence: 0.05 (two tailed) Date: Dataset (1) ALL_25D_ | (2) ALL_3 (3) ALL_n (4) InfoF rules.ZeroR (100) | rules.NNge (100) | * v rules.JRip (100) | * trees.J (100) | lazy.IB (100) | v v lazy.IBk (100) | v v v functions.SMO (100) | v bayes.NaiveBayes (100) | * * (v/ /*) | (1/6/1) (2/3/3) (4/4/0) Skipped: Key: (1) ALL_25D_pca (2) ALL_3Dsnp_pca (3) ALL_noseRect_pca (4) InfoFmeasures3_4-unsupervised.attribute.Remove-R3-4
22
Analysing: F_measure Datasets: 8 Resultsets: 4 Confidence: 0.05 (two tailed) Date: Dataset (1) ALL_25D_ | (2) ALL_3 (3) ALL_n (4) InfoF rules.ZeroR (100) | rules.NNge (100) | * v rules.JRip (100) | * trees.J (100) | * lazy.IB (100) | v v lazy.IBk (100) | v v functions.SMO (100) | v bayes.NaiveBayes (100) | * (v/ /*) | (1/7/0) (1/3/4) (4/4/0) Skipped: Key: (1) ALL_25D_pca (2) ALL_3Dsnp_pca (3) ALL_noseRect_pca (4) InfoFmeasures3_4-unsupervised.attribute.Remove-R3-4
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.