Download presentation
Presentation is loading. Please wait.
Published byAshlee Jenkins Modified over 6 years ago
1
September 4, 1997 Parallel Processing (CS 667) Lecture 5: Shared Memory Parallel Programming with OpenMP* Jeremy R. Johnson Parallel Processing
2
September 4, 1997 Introduction Objective: To further study the shared memory model of parallel programming. Introduction to the OpenMP standard for shared memory parallel programming Topics OpenMP vs. Pthreads hello_pthreadsc hello_openmp.c Parallel Regions and execution model Data parallelism with loops Shared vs. private variables Scheduling and chunk size Synchronization and reduction variables Functional parallelism with parallel sections Case Studies Parallel Processing
3
OpenMP Extension to FORTRAN, C/C++ Shared memory model
Uses directives (comments in FORTRAN, pragma in C/C++) ignored without compiler support Some library support required Shared memory model parallel regions loop level parallelism implicit thread model communication via shared address space private vs. shared variables (declaration) explicit synchronization via directives (e.g. critical) library routines for returning thread information (e.g. omp_get_num_threads(), omp_get_thread_num() ) Environment variables used to provide system info (e.g. OMP_NUM_THREADS) Parallel Processing
4
Benefits Provides incremental parallelism Small increase in code size
Simpler model than message passing Easier to use than thread library With hardware and compiler support smaller granularity than message passing. Parallel Processing
5
Further Information Adopted as a standard in 1997 www.openmp.org
Initiated by SGI computing.llnl.gov/tutorials/openMP Chandra, Dagum, Kohr, Maydan, McDonald, Menon, “Parallel Programming in OpenMP”, Morgan Kaufman Publishers, 2001. Chapman, Jost, and Van der Pas, “Using OpenMP: Portable Shared Memory Parallel Programming,” The MIT Press, 2008. Parallel Processing
6
Shared vs. Distributed Memory
P0 P1 Pn Memory P0 P1 Pn ... ... M0 M1 Mn Interconnection Network Shared memory Distributed memory Parallel Processing
7
Shared Memory Programming Model
Shared memory programming does not require physically shared memory so long as there is support for logically shared memory (in either hardware or software) If logical shared memory then there may be different costs for accessing memory depending on the physical location. UMA - uniform memory access SMP - symmetric multi-processor typically memory connected to processors via a bus NUMA - non-uniform memory access typically physically distributed memory connected via an interconnection network Parallel Processing
8
Hello_openmp.c #include <stdio.h> #include <stdlib.h>
#include <omp.h> int main(int argc, char **argv) { int n; if (argc > 1) { n = atoi(argv[1]); omp_set_num_threads(n); } printf("Number of threads = %d\n",omp_get_num_threads()); #pragma omp parallel int id = omp_get_thread_num(); printf("Hello World from %d\n",id); if (id == 0) exit(0); Parallel Processing
9
Compiling & Running Hello_openmp
% gcc –fopenmp hello_openmp.c –o hello % ./hello 4 Number of threads = 1 Hello World from 1 Hello World from 0 Hello World from 3 Number of threads = 4 Hello World from 2 The order of the print statements is nondeterministic Parallel Processing
10
Execution Model Master thread Parallel Region Master and slave threads
Implicit thread creation (fork) Parallel Region Master and slave threads Implicit barrier synchronization (join) Master thread Parallel Processing
11
Explicit Barrier #include <stdio.h> #include <stdlib.h>
int main(int argc, char **argv) { int n; if (argc > 1) { n = atoi(argv[1]); omp_set_num_threads(n); } printf("Number of threads = %d\n",omp_get_num_threads()); #pragma omp parallel int id = omp_get_thread_num(); printf("Hello World from %d\n",id); #pragma omp barrier if (id == 0) printf("Number of threads = %d\n",omp_get_num_threads()); exit(0); Parallel Processing
12
Output with Barrier %./hellob 4 Number of threads = 1
Hello World from 1 Hello World from 0 Hello World from 2 Hello World from 3 Number of threads = 4 The order of the “Hello World” print statements are nondeterministic; however, the Number of threads print statement always comes at the end Parallel Processing
13
Hello_pthreads.c #include <stdio.h> #include <stdlib.h>
#include <pthread.h> #include <errno.h> #define MAXTHREADS 32 int main(int argc, char **argv) { int error,i,n; void hello(int *pid); pthread_t tid[MAXTHREADS],mytid; int pid[MAXTHREADS]; if (argc > 1) { n = atoi(argv[1]); if (n > MAXTHREADS) { printf("Too many threads\n"); exit(1); } pthread_setconcurrency(n); printf("Number of threads = %d\n",pthread_getconcurrency()); for (i=0;i<n;i++) { pid[i]=i; error = pthread_create(&tid[i], NULL,(void *(*)(void *))hello, &pid[i]); } for (i=0;i<n;i++) { error = pthread_join(tid[i],NULL); exit(0); Parallel Processing
14
Hello_pthreads.c void hello(int *pid) { pthread_t tid;
tid = pthread_self(); printf("Hello World from %d (tid = %u)\n",*pid,(unsigned int) tid); if (*pid == 0) printf("Number of threads = %d\n",pthread_getconcurrency()); } % gcc -pthread hello.c -o hello % ./hello 4 Number of threads = 4 Hello World from 0 (tid = ) Hello World from 1 (tid = ) Hello World from 3 (tid = ) Hello World from 2 (tid = ) The order of the print statements is nondeterministic Parallel Processing
15
Types of Parallelism Data Parallelism Functional Parallelism FORK JOIN
LOOP F1 F2 F3 F4 Threads execute same instructions Threads execute different instructions … but on different data … and can read same data but should write different data
16
Parallel Loop int a[1000], b[1000]; int main() { int i; int N = 1000;
for (i=0; i<N; i++) a[i] = i; b[i] = N-i; for (i=0;i<N;i++) { a[i] = a[i] + b[i]; } int a[1000], b[1000]; int main() { int i; int N = 1000; // Serial Initialization for (i=0; i<N; i++) a[i] = i; b[i] = N-i; #pragma omp for shared(a,b), private(i), schedule(static) for (i=0;i<N;i++) { a[i] = a[i] + b[i]; } Parallel Processing
17
Scheduling of Parallel Loop
+ b 1 2 Nthreads-1 tid Stripmining Parallel Processing
18
Implementation of Parallel Loop
void vadd(int *id) { int i; for (i=*id;i<N;i+=numthreads) { a[i] = a[i] + b[i]; } for (i=0;i<numthreads;i++) { id[i] = i; error = pthread_create(&tid[i],NULL,(void *(*)(void *))vadd, &id[i]); error = pthread_join(tid[i],NULL); Parallel Processing
19
Scheduling Chunks of Parallel Loop
chunk0 Chunk 1 Chunk 2 b chunk0 Chunk Nthreads-1 1 2 tid Parallel Processing
20
Implementation of Chunking
#pragma omp for shared(a,b), private(i), schedule(static,CHUNK) for (i=0;i<N;i++) { a[i] = a[i] + b[i]; } void vadd(int *id) { int i,j; for (i=*id*CHUNK;i<N;i+=numthreads*CHUNK) { for (j=0;j<CHUNK;j++) a[i+j] = a[i+j] + b[i+j]; Parallel Processing
21
Race Condition int x[10000000]; int main(int argc, char **argv) {
int sum=0; ……. omp_set_num_threads(numcounters); for (i=0;i<numcounters*limit;i++) x[i] = 1; #pragma omp parallel for schedule(static) private(i) shared(sum,x) { sum = sum + x[i]; if (i==0) printf("num threads = %d\n",omp_get_num_threads()); } Parallel Processing
22
Critical Sections int x[10000000]; int main(int argc, char **argv) {
int sum=0; ……. #pragma omp parallel for schedule(static) private(i) shared(sum,x) for (i=0;i<numcounters*limit;i++) { #pragma omp critical(sum) sum = sum + x[i]; } Parallel Processing
23
Reduction Variables int x[10000000]; int main(int argc, char **argv) {
int sum=0; ……. #pragma omp parallel for schedule(static) private(i) shared(x) reduction(+:sum) for (i=0;i<numcounters*limit;i++) { sum = sum + x[i]; } Parallel Processing
24
Reduction + + + + + + X[] partial sum partial sum partial sum partial
total sum Parallel Processing
25
Implementing Reduction
#pragma omp parallel shared(sum,x) { int i; int localsum=0; int id; id = omp_get_thread_num(); for (i=id;i<numcounters*limit;i+=numcounters) localsum = localsum + x[i]; } #pragma omp critical(sum) sum = sum+localsum; Parallel Processing
26
Functional Parallelism Example
int main() { int i; double a[N], b[N], c[N], d[N]; // Parallel Function #pragma omp parallel shared(a,b,c,d) privite(i) #pragma omp sections #pragma omp section for (i=0; i<N; i++) c[i] = a[i] + b[i]; d[i] = a[i] * b[i]; }
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.