Presentation is loading. Please wait.

Presentation is loading. Please wait.

4.1B – Probability Distribution

Similar presentations


Presentation on theme: "4.1B – Probability Distribution"— Presentation transcript:

1 4.1B – Probability Distribution
MEAN of discrete random variable: µ = ΣxP(x) EACH x is multiplied by its probability and the products are added. µ = EXPECTED VALUE of discrete random variables

2 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24 2 33
42 4 30 5 21 Σ=

3 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24 2 33
42 4 30 5 21 Σ=150

4 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 2 33 3 42 4 30 5 21 Σ=150

5 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 2 33 .22 3 42 .28 4 30 .2 5 21 .14 Σ=150

6 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 2 33 .22 3 42 .28 4 30 .2 5 21 .14 Σ=150 Σ=1.0

7 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 3 42 .28 4 30 .2 5 21 .14 Σ=150 Σ=1.0

8 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 4 30 .2 5 21 .14 Σ=150 Σ=1.0

9 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 3(.28)=.84 4 30 .2 5 21 .14 Σ=150 Σ=1.0

10 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 3(.28)=.84 4 30 .2 4(.2)=.80 5 21 .14 Σ=150 Σ=1.0

11 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 3(.28)=.84 4 30 .2 4(.2)=.80 5 21 .14 5(.14)=.70 Σ=150 Σ=1.0

12 Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 3(.28)=.84 4 30 .2 4(.2)=.80 5 21 .14 5(.14)=.70 Σ=150 Σ=1.0 ΣxP(x)=2.94 = µ

13 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)

14 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)

15 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)

16 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)

17 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)

18 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)

19 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 $148 $73 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)

20 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 $73 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)

21 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 148(1/1500)=148/1500 $73 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)

22 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 148(1/1500)=148/1500 $73 73(1/1500)=73/1500 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)

23 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 148(1/1500)=148/1500 $73 73(1/1500)=73/1500 $-2 1496/1500 -2(1/1500)=-2992/1500 Prize-$2 EV = µ=ΣxP(x)

24 Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 148(1/1500)=148/1500 $73 73(1/1500)=73/1500 $-2 1496/1500 -2(1496/1500)=-2992/1500 Prize-$2 EV = µ=ΣxP(x)=-2025/1500 = -$1.35

25 Standard Deviation VARIANCE of discrete random variable
σ² = Σ(x-µ)²P(x) OR σ² = [Σx²P(x)] - µ² STANDARD DEVIATION of discrete random variable σ = √σ²

26 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 .84 4 30 .20 .80 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

27 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 3 42 .28 .84 4 30 .20 .80 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

28 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 4 30 .20 .80 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

29 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 .06 4 30 .20 .80 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

30 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 .06 4 30 .20 .80 1.06 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

31 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 .06 4 30 .20 .80 1.06 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

32 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 .06 4 30 .20 .80 1.06 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

33 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 4 30 .20 .80 1.06 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

34 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

35 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

36 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

37 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

38 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

39 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

40 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 .225 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

41 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 .225 5 21 .14 .70 2.06 4.244 .594 Σ=150 Σ=1.0 Σ=2.94 σ = √σ²

42 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 .225 5 21 .14 .70 2.06 4.244 .594 Σ=150 Σ=1.0 Σ=2.94 Σ=1.616 σ = √σ²

43 Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 .225 5 21 .14 .70 2.06 4.244 .594 Σ=150 Σ=1.0 Σ=2.94 Σ=1.616 σ = √σ² = √1.616 = 1.27


Download ppt "4.1B – Probability Distribution"

Similar presentations


Ads by Google