Download presentation
Presentation is loading. Please wait.
1
4.1B – Probability Distribution
MEAN of discrete random variable: µ = ΣxP(x) EACH x is multiplied by its probability and the products are added. µ = EXPECTED VALUE of discrete random variables
2
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24 2 33
42 4 30 5 21 Σ=
3
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24 2 33
42 4 30 5 21 Σ=150
4
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 2 33 3 42 4 30 5 21 Σ=150
5
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 2 33 .22 3 42 .28 4 30 .2 5 21 .14 Σ=150
6
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 2 33 .22 3 42 .28 4 30 .2 5 21 .14 Σ=150 Σ=1.0
7
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 3 42 .28 4 30 .2 5 21 .14 Σ=150 Σ=1.0
8
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 4 30 .2 5 21 .14 Σ=150 Σ=1.0
9
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 3(.28)=.84 4 30 .2 5 21 .14 Σ=150 Σ=1.0
10
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 3(.28)=.84 4 30 .2 4(.2)=.80 5 21 .14 Σ=150 Σ=1.0
11
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 3(.28)=.84 4 30 .2 4(.2)=.80 5 21 .14 5(.14)=.70 Σ=150 Σ=1.0
12
Example: Find the Mean Score, x Frequency, f P(x) f/Σf xP(x) 1 24
24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 3(.28)=.84 4 30 .2 4(.2)=.80 5 21 .14 5(.14)=.70 Σ=150 Σ=1.0 ΣxP(x)=2.94 = µ
13
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)
14
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)
15
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)
16
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)
17
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 Prize-$2 EV = µ=ΣxP(x)
18
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 $248 $148 $73 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)
19
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 $148 $73 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)
20
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 $73 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)
21
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 148(1/1500)=148/1500 $73 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)
22
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 148(1/1500)=148/1500 $73 73(1/1500)=73/1500 $-2 1496/1500 Prize-$2 EV = µ=ΣxP(x)
23
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 148(1/1500)=148/1500 $73 73(1/1500)=73/1500 $-2 1496/1500 -2(1/1500)=-2992/1500 Prize-$2 EV = µ=ΣxP(x)
24
Example: Find the EXPECTED VALUE of your gain.
1500 tickets are sold for $2 each for 4 prizes of $500, $250, $150, and $75. You buy 1 ticket. What is the expected value of your gain? Gain, x P(x) xP(x) $498 1/1500 498(1/1500)=498/1500 $248 248(1/1500)=248/1500 $148 148(1/1500)=148/1500 $73 73(1/1500)=73/1500 $-2 1496/1500 -2(1496/1500)=-2992/1500 Prize-$2 EV = µ=ΣxP(x)=-2025/1500 = -$1.35
25
Standard Deviation VARIANCE of discrete random variable
σ² = Σ(x-µ)²P(x) OR σ² = [Σx²P(x)] - µ² STANDARD DEVIATION of discrete random variable σ = √σ²
26
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 2 33 .22 2(.22)=.44 3 42 .28 .84 4 30 .20 .80 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
27
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 3 42 .28 .84 4 30 .20 .80 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
28
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 4 30 .20 .80 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
29
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 .06 4 30 .20 .80 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
30
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 .06 4 30 .20 .80 1.06 5 21 .14 .70 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
31
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 .06 4 30 .20 .80 1.06 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
32
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 3 42 .28 .84 .06 4 30 .20 .80 1.06 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
33
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 4 30 .20 .80 1.06 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
34
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
35
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
36
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
37
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
38
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
39
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
40
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 .225 5 21 .14 .70 2.06 4.244 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
41
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 .225 5 21 .14 .70 2.06 4.244 .594 Σ=150 Σ=1.0 Σ=2.94 =µ σ = √σ²
42
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 .225 5 21 .14 .70 2.06 4.244 .594 Σ=150 Σ=1.0 Σ=2.94 =µ Σ=1.616 σ = √σ²
43
Example: Find Variance & Standard Deviation
Score, x Freq. f P(x) f/Σf xP(x) x-µ x-ΣxP(x) (x-µ)² P(x)(x-µ)² 1 24 24/150=.16 1(.16)=.16 1-2.94= -1.94 (-1.94)²= 3.764 .16(3.764)= .602 2 33 .22 2(.22)=.44 2-2.94= -.94 (-.94)²= .884 .22(.884)= .194 3 42 .28 .84 .06 .004 .001 4 30 .20 .80 1.06 1.124 .225 5 21 .14 .70 2.06 4.244 .594 Σ=150 Σ=1.0 Σ=2.94 =µ Σ=1.616 σ = √σ² = √1.616 = 1.27
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.