Download presentation
Presentation is loading. Please wait.
1
Electron Configuration
Ch. 4 - Electrons in Atoms Electron Configuration
2
Maximum Number of Electrons In Each Sublevel
Sublevel Number of Orbitals of Electrons s p d f LeMay Jr, Beall, Robblee, Brower, Chemistry Connections to Our Changing World , 1996, page 146
3
Electron capacities Electron capacities
Copyright © 2006 Pearson Benjamin Cummings. All rights reserved.
4
Writing Electron Configurations
Way to show the arrangement of electrons in an atom Parts: 1s2 1 = energy level s = sublevel 2 = number of electrons 1s2 2s2 2p4
5
Sublevels 4f 4d 4p 4s n = 4 3d 3p 3s n = 3 Energy 2p 2s n = 2 1s n = 1
1s22s22p63s23p64s23d104p65s24d10… Electron configuration of an element is the arrangement of its electrons in its atomic orbitals One can obtain and explain a great deal of the chemistry of the element by knowing its electron configuration 2p 2s n = 2 1s n = 1
6
S 16e- 1s2 2s2 2p6 3s2 3p4 S 16e- [Ne] 3s2 3p4 Notation Core Electrons
Longhand Configuration S 16e- 1s2 2s2 2p6 3s2 3p4 Core Electrons Valence Electrons Shorthand Configuration S 16e- [Ne] 3s2 3p4
7
Filling Rules for Electron Orbitals
Aufbau Principle: Electrons are added one at a time to the lowest energy orbitals available until all the electrons of the atom have been accounted for. Pauli Exclusion Principle: An orbital can hold a maximum of two electrons. To occupy the same orbital, two electrons must spin in opposite directions. Hund’s Rule: Electrons occupy equal-energy orbitals so that a maximum number of unpaired electrons results. *Aufbau is German for “building up”
8
General Rules Aufbau Principle
Electrons fill the lowest energy orbitals first. “Lazy Tenant Rule”
9
Order in which subshells are filled with electrons
2p 3p 4p 5p 6p 3d 4d 5d 6d 4f 5f 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d …
10
Examples Chlorine Bromine Calcium
11
General Rules Pauli Exclusion Principle
Each orbital can hold TWO electrons with opposite spins.
12
Notation Orbital Diagram 1s 2s 2p O 8e-
13
General Rules WRONG RIGHT Hund’s Rule
Within a sublevel, place one e- per orbital before pairing them. “Empty Bus Seat Rule” WRONG RIGHT
14
H = 1s1 He = 1s2 Li = 1s2 2s1 Be = 1s2 2s2 C = 1s2 2s2 2p2 S
THIS SLIDE IS ANIMATED IN FILLING ORDER 2.PPT H = 1s1 1s He = 1s2 1s Li = 1s2 2s1 1s 2s Be = 1s2 2s2 1s 2s C = 1s2 2s2 2p2 1s 2s 2px 2py 2pz S = 1s2 2s2 2p43s23p4 1s 2s 2px 2py 2pz 3s 3px 3py 3pz
15
Fe = 1s1 2s22p63s23p64s23d6 26 Iron has ___ electrons. Arbitrary
2px 2py 2pz 3s 3px 3py 3pz 4s 3d 3d 3d 3d 3d Arbitrary Energy Scale 18 32 8 2 1s 2s p 3s p 4s p d 5s p d 6s p d f NUCLEUS e- e- e- e- e- e- e- e- e- e- e- e- e- +26 e- e- e- e- e- e- e- e- e- e- e- e- e-
16
Examples Nitrogen Aluminum
17
Shorthand Configuration
Element symbol Electron configuration Ca [Ar] 4s2 V [Ar] 4s2 3d3 F [He] 2s2 2p5 Ag [Kr] 5s2 4d9 I [Kr] 5s2 4d10 5p5 Xe [Kr] 5s2 4d10 5p6 Fe [He] 2s22p63s23p64s23d6 [Ar] 4s23d6 Sg [Rn] 7s2 5f14 6d4
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.