Presentation is loading. Please wait.

Presentation is loading. Please wait.

Working group on rf and feedback

Similar presentations


Presentation on theme: "Working group on rf and feedback"— Presentation transcript:

1 Working group on rf and feedback
Explore and document the operational experience of present rf systems and bunch feedback systems What are the existing limitations of high power rf systems? What are the present limitations of multi-bunch feedback systems? What advances need to be achieved to increase the beam currents to 5 to 10 amperes per beam with 1 to 2 nsec spacing and an energy of a few GeV? What will the future low mode feedback systems look like? Will parallel medium-power amplifiers around high power klystrons help with beam instabilities? What are the future requirements of bunch-by-bunch high frequency feedbacks?

2 Associates: Dmitry Teytelman and Peter McIntosh Chair: John Corlett
Monday - rf and feedback systems Tuesday - collective effects Wednesday Joint session’s KEKB-Linac Upgrade Plan Using C-Band System for SuperKEKB (Fukuda) PEP-II low-level rf fault file analysis (Teytelman) Strong RF Focusing: a possible approach to get short bunches at the IP (Gallo) Future very high luminosity options for PEP-II (Seeman) Analytical Treatment of NonLinear Beam Dynamics in a Storage Ring (Gao) Associates: Dmitry Teytelman and Peter McIntosh Chair: John Corlett + Ops group + BB group

3 RF and feedback presentations
ARES Upgrade for Super-KEKB – Tetsuo Abe Bunch Shortening using Superconducting Harmonic Cavities – John Byrd The DAFNE 3rd Harmonic Cavity – Alessandro Gallo Update on the Performance of Superconducting Cavities in KEKB – Takaaki Furuya Analysis of rf and feedback limitations in PEP-II – Dimitri Teytelman The Linac Upgrade Plan Using A C-band System for SUPERKEKB – S. Fukuda PEP-II low-level rf fault file analysis– Dimitri Teytelman

4 ARES Upgrade for Super-KEKB – Tetsuo Abe
ARES cavity system uses three normal-conducting cavities coupled together Accelerating cavity, coupling cavity, storage cavity P/2 mode System has large stored energy Reduced detuning Fundamental does not strongly drive coupled-bunch modes under design conditions

5 Tetsuo Abe

6 Tetsuo Abe For Super KEK-B operations up to 9.4 A Increase ratio of stored energy to accelerating mode energy From Us/Ua = 9 to Us/Ua = 15 Change cavity coupling New accelerating cavities Prototype in 2004

7 Tetsuo Abe Need rf feedback system to control m=-1, -2 modes Under development Need broadband longitudinal feedback for fundamental 0 and p modes, and HOM-driven modes 80 kW dissipated per cavity Need more absorbers and water cooling Developing multipactor-free coaxial rf power coupler

8 Voltage completely reactive (i.e. 90 phase shift w.r.t beam)
Passive harmonic cavities for bunch shortening – John Byrd Use reactive longitudinal focusing from beam-induced voltage in a cavity Use SC cavity so that Low beam losses Higher voltages Use at RF harmonic to get larger dV/dt Beam induced voltage V=jI(R/Q)fr/df Voltage completely reactive (i.e. 90 phase shift w.r.t beam)

9 Existence proofs for cavities at BESSY and ELETTRA
John Byrd Using 2 SC cells (R/Q=87 Ohms,Q=2e8), proper tuning can shorten the bunches in PEP-II by a factor of 2.5 Existence proofs for cavities at BESSY and ELETTRA Need to assess effects for large rings low-mode coupled-bunch modes differential tune shift is important

10 The DAFNE 3rd harmonic cavity – Alessandro Gallo
Passively powered harmonic cavity to lengthen the bunches. Touschek lifetime increase, due also to improvements of the dynamic aperture and RF acceptance, is  80%; Additional positive effects larger Landau damping larger natural bunch length Low R/Q - coherent synchrotron frequencies shift are under control

11 Alessandro Gallo The “parking option”, as a reliable back-up procedure Two cavities have been designed, built and tested on bench Suppression of the HOMs with KEK-B SBP ferrite damper Measurements are in substantial agreement with MAFIA and HFSS simulations Wide tuning range 5 revolution harmonics around the RF 3rd harmonic

12 Working point of the main and harmonic RF systems
A. Gallo: The DAFNE 3rd Harmonic Cavity Alessandro Gallo If the harmonic voltage is phased to reduce the total RF slope, the bunch natural length increases. The further lengthening produced by the ring wakes can be estimated by a multiparticle tracking simulation Working point of the main and harmonic RF systems

13 Alessandro Gallo Gap in the bunch filling pattern produces a large spread of the synchronous phases. Different bunches will collide at slightly different IPs and the synchronization of the bunch-by-bunch feedback systems may be affected Different bunch distribution along the train Touschek lifetime gain is not uniform over the train

14 Wide Tunability (-1.5 frev 3.5 frev)
Round Aluminium Cell R/Q 25  Wide  Tunability (-1.5 frev 3.5 frev) KEK-B Ferrite Damper No direct Ferrite exposure to the Beam Alessandro Gallo

15 Update on the Performance of Superconducting Cavities in KEKB – Takaai Furuya
* RF of HER is a combination of SC & NC * Crab cavities is just under R&D phase SC cavities in NIKKO straight section.

16 SC Cavities in KEKB Takaai Furuya Cavity *Nb single-cell
*Frequency: 508 MHz *Gap length: m *R/Q : 93 Ohm *Total length: 3.7 m

17 Takaai Furuya SC cavities are slightly conditioned every two weeks for about two hours

18 Takaai Furuya Unloaded Q

19 Modify coaxial power feed to avoid multipacting
Takaai Furuya Super KEK-B Increased beam power Modify coaxial power feed to avoid multipacting Modify ferrite dampers to accommodate 50 kW beam induced power

20 Monitoring beam-abort
Takaai Furuya Monitoring beam-abort Coupling and reaction between RF cavities and stored beams is quite strong in ampere class accelerators Difficult to identify the real reason of beam loss or RF-trip events 24ch-data logger 650 ms history with 5 ms resolution RF signals Radiation monitor at movable masks Beam synchronous phase

21 Limitations and upgrade options for PEP-II
PEP-II low-level rf fault file analysis – Dmitry Teytelman PEP- II designed to operate above instability threshold in all 3 planes: horizontal, vertical and longitudinal Beam is kept stable via a combination of three techniques HOM damping in RF cavities – longitudinal and transverse Bunch- by- bunch feedback systems - longitudinal and transverse Active impedance reduction for the fundamental mode of the RF cavities - longitudinal

22 RF cavities must be detuned beyond first revolution harmonic
Dmitry Teytelman PEP- II beam loading RF cavities must be detuned beyond first revolution harmonic Worst- case growth time for mode -1 is 33 ms 185 m s synchrotron period!

23 Dmitry Teytelman Direct proportional feedback loop around the cavity Reduces the effective impedance seen by the beam To reduce the growth rates further we add the comb filter Narrow gain peaks at synchrotron sidebands Growth rates shown for a linear transfer function model Reduction by two orders of magnitude, from 30 to 0.35 ms -1

24 Dmitry Teytelman Feedback systems currently running near maximum usable gain to control fundamental- driven modes

25 Linear model is not applicable
Dmitry Teytelman Klystron saturation Linear model is not applicable HER at 1 A the growth rates rise from linear prediction 0.12 to actual ms-1

26 Techniques to combat increased growth rates
Dmitry Teytelman Techniques to combat increased growth rates Reduce klystron saturation by installing tubes with full- power collectors and improved water cooling Dedicated “woofer” link from feedback system to rf stations Single- sideband comb filters Use a separate (linear) feedback amplifier in parallel with the klystron Energy storage cavities Superconducting RF

27 Fault analysis RF processing module
Dmitry Teytelman Fault analysis RF processing module Circular buffer records I&Q components ADC samples at 10 MHz Recording stops on beam abort signal

28 Dmitry Teytelman Nice steady- state running with periodic gap transient. After the last turn the beam does not arrive in the cavity after the gap - cavity charges up to high voltage Synchronization to the gap indicates that the abort kicker fired after the last recorded turn (around ms). When the beam disappears the cavity becomes mismatched to the generator and we get large reflected power. However, the primary event that causes the reflected power trip is the abort kicker firing.

29 Forward power of all HER stations is shown
Dmitry Teytelman Forward power of all HER stations is shown Around 4 ms power contribution of stations in Region 8 goes down and of those in Region 12 – up This event is due to a differential phase shift of the RF reference between Regions 8 and 12.

30 Generate summary from daily analysis of all RF- related beam aborts.
Dmitry Teytelman RF- related events are defined as beam aborts described in the operations log as being caused by ring RF system or longitudinal instabilities. Generate summary from daily analysis of all RF- related beam aborts. Analysis is based on fault files saved by RF stations during a beam abort event and is very time- consuming.

31 The Linac Upgrade Plan Using A C-band System for SUPERKEKB – Shigeki Fukuda

32 Requirements for SuperKEKB
Shigeki Fukuda Requirements for SuperKEKB (1) KEKB SuperKEKB Beam Energy (e-) 8.0 GeV > 3.5 GeV(8.0 GeV) (e+) 3.5 GeV > 8.0 GeV !! (3.5 eV) NEED Energy upgrade for e+ ! > C-band accelerator units (2) June design KEKB SuperKEKB Stored current (e-) 0.95 A --> 1.1 A ---> 9.4 A !!(4.1 A) (e+) A --> 2.6 A ---> 4.1 A !! (9.4 A) NEED Intensity upgrade for e-/e+ ! -> flux concentrator, more bunch charge, 2-bunch operation (3) Mode-switching -> Continuous & Simultaneous e+/e- Injection -> optimization of layout, 2-bunch operation Pink: unswitched case

33 Scheme-1 (Energy switched)
Shigeki Fukuda e+ energy is boosted by the C-band units. 2-bunches from the gun are used for simultaneous injection of e- (LER) and e+ (HER) in a same RF pulse. Energy gain S-band: 1.28 GeV/sector -> C-band: 2.56 GeV/sector (New constructions) e+ focusing flux concentrator Damping e+ 1.0 GeV Sector-3, 4, 5 : -> C-band units e– e– 3.5 GeV

34 Scheme-2 (Energy unswitched)
Shigeki Fukuda e+/e- modes are switched. (quasi-)simultaneous injection is difficult poor e+ intensity (New constructions) e+ focusing flux concentrator Damping e+ 1.0 GeV

35 Scheme 1+2 (Energy (un)switched)
Shigeki Fukuda Scheme 1+2 (Energy (un)switched) Energy gain S-band: 1.28 GeV/sector -> C-band: 2.56 GeV/sector Even for the unswitched case, the C-band units enables to separate the e+ and e- beam lines, the simultaneous injection or pulse-to-pulse mode switching. (New constructions) e+ focusing flux concentrator Damping e+ 1.0 GeV Sector-3, 4, 5 : -> C-band units e– e– 3.5 GeV

36 Summary of C-band linac
Shigeki Fukuda Summary of C-band linac High power rf processing of 1m C-band accelerator guide for Super KEKB was successfully performed and power corresponding to 42 MV/m was achieved Acoustic sensors to investigate possible arcing Processed accelerator was installed in the beam line of KEKB linac and being re-processed. The beam acceleration of 40MV/m was successfully achieved in October 2003

37 Collective effects presentations
Potential-Well Distortion in RF Barriers - King Ng Multi-bunch Longitudinal Instability due to the Electron Cloud - Sasha Novokhatski Recent Observations of Collective Effects at KEKB - Hitoshi Fukuma Collective Effects for the PEP-II Upgrade - Samuel Heifets

38 Potential-Well Distortion in RF Barriers - King Ng

39 Beam spreads out with lower space-charge force
Barrier rf system Beam spreads out with lower space-charge force Can merge two batches together easily Can compress by moving a barrier slowly Can move batch from one location to another If baseline is not zero,rf potential will be head-tail asymmetric Head-tail asymmetry King Ng

40 Can correct by adjusting rf system
King Ng Can correct by adjusting rf system Properly adjusted rf system introduces opposite asymmetry Small voltage (~ 10V in 2 kV rf system) restores linearity

41 The voltage compensation is smaller than actually used
King Ng Remaining problems The voltage compensation is smaller than actually used The predicted slant is not linear Elliptical-like distribution does not fit measured energy spread

42 Multi-bunch Longitudinal Instability due to the Electron Cloud - Sasha Novokhatski

43 Positron bunch “head” is accelerated
Sasha Novokhatski Electric force lines from electron cloud Positron bunch Positron bunch “head” is accelerated “tail” is decelerated

44 Sasha Novokhatski Multipacting AT 38 G

45 Longitudinal electric field
Sasha Novokhatski Longitudinal electric field If electron cloud happens in all straight sections, the energy variation in a positron bunch can be of order of 74 kV, which is equivalent to 185 kV of RF voltage of 476 MHz.

46 Instability along bunch train
Sasha Novokhatski Instability along bunch train

47 Adds energy variation inside the positron bunches
Sasha Novokhatski Longitudinal electric field produces an oscillating force on the cloud electrons Adds energy variation inside the positron bunches head of the positron bunch is accelerated and the tail is decelerated This action of the longitudinal field is similar to the action of RF fields in a cavity and has the same sign Bunches will have different lengths throughout the train Electron cloud space-charge field acts as a resonance force for the longitudinal beam motion Emittance growth Longitudinal multi-bunch instability

48 Recent Observations of Collective Effects at KEKB - Hitoshi Fukuma
3 and 4 bucket spacing : the threshold increases when the field strength increases 2 spacing : the threshold saturates Assuming a present solenoid system, stronger field will be helpful in raising the threshold if bunch spacing is larger than/equal to 3 buckets.

49 Tune shift by e-cloud Hitoshi Fukuma
4 trains, 200 bunches/train, 4 bucket spacing, bunch current 0.58mA 4 trains, 200 bunches/train, 2/3/4 bucket spacing, bunch current 0.5mA, with 100% solenoid

50 Blowup vs. location of e-cloud
Hitoshi Fukuma Blowup vs. location of e-cloud 4 trains, 200 bunches/train, 3 bucket spacing West arc off Tsukuba straight section off all solenoid on Fuji straight section off 1. The solenoids in the straight sections are effective on the blowup, even in Fuji straight section where no wiggler magnets are installed. 2. Effect of solenoids on the threshold current of the blowup 1/4 arc > Fuji straight > Tsukuba straight

51 Work this summer Hitoshi Fukuma 1. Addition of solenoids
215 solenoids at straight sections 50 permanent magnets over BPM at Oho and Nikko straight sections 2. Changing the connection of the solenoid power cables to study the effect of polarity-changing-place.

52 Summary of e-cloud effects
Hitoshi Fukuma Summary of e-cloud effects 1. Increasing the solenoid field will improve the threshold of the blowup if bunch spacing is larger than/equal to 3 bucket spacing. 2. Substantial e-cloud is generated in straight sections according to the measurement of the blowup and the tune shift. 3. Suppression in 2 bucket spacing will be very difficult. Large tune shift was observed in 2 bucket spacing operation. Almost no effect was observed by increasing the solenoid field. 4. Clear vertical tilt along a bunch is not observed by the measurement of the streak camera. Considering increase of solenoid field from 4.5 A to 10 A Temperature raise of solenoid coil: 100 deg C Further solenoid winding in Fuji straight section (RF section) Consider possibility to use clearing electrodes inside magnets

53 Coupled-bunch instability appears intermittently in HER
Hitoshi Fukuma Coupled-bunch instability appears intermittently in HER 4trains, 200 bunches/train, 4 bucket spacing, 600mA Horizontal Vertical Larger amplitude in tail-part Almost uniform amplitude Saturation at large amplitude No saturation of amplitude

54 Growth rate Hitoshi Fukuma 1 train, 1152 bunches, 4 bucket spacing
Growth rate : (1/turn) or growth time : 5ms @700mA

55 Hitoshi Fukuma Beam current dependence of horizontal mode spectrum
1 train , 1152 bunches, 4 bucket spacing 400mA 500mA 600mA Consistent with CO+ ions

56 Summary of observations of transverse coupled bunch instability in HER
Hitoshi Fukuma Summary of observations of transverse coupled bunch instability in HER 1) Horizontal coupled bunch instability in HER sometime causes beam aborts which limit the beam current. 2) Observations are consistent with the results of the simulation which assumes the instability is caused by CO+ ions. 3) A question remains why the instability was not cured by the bunch-by-bunch feedback system. 4) Vertical coupled bunch instability is also observed in HER. Features of the instability are different from those of the horizontal instability, which suggests the vertical instability is caused by a different source than that of the horizontal one.

57 Collective Effects for the PEP-II Upgrade - Samuel Heifets
“Traditional” coherent instabilities Extend to higher current configurations Vacuum chamber wakefields Longitudinal Transverse Single-bunch Coupled-bunch

58 Longitudinal wake for LER PEP-II with 8 rf cavities
Sam Heifets Longitudinal wake for LER PEP-II with 8 rf cavities Loss factor increases from 5.4 V/pC at 11 mm to 20 V/pC at 6 mm bunch length

59 Potential well distortion small
Sam Heifets Potential well distortion small Microwave threshold estimates vary ~ 3 mA – 15 mA Depends on analytical vs tracking with wake Work in progress

60 Longitudinal coupled-bunch modes
Sam Heifets Longitudinal coupled-bunch modes Within range of feedback systems

61 Transverse instabilities
Sam Heifets Transverse instabilities Resistive-wall driven closed-orbit instability Threshold 7 A Mode coupling threshold 13 mA

62 Transverse dipole-mode coupled bunch instabilities
Sam Heifets Transverse dipole-mode coupled bunch instabilities Qy = 3 A Within range of feedback systems

63 Transverse quadrupole-mode coupled bunch instabilities
Sam Heifets Transverse quadrupole-mode coupled bunch instabilities Qy = 1A Threshold 1.4 A Will need high-frequency feedback system Kick gradient along bunch

64 Coupled-bunch mode coupling instabilities
Sam Heifets Coupled-bunch mode coupling instabilities Enhanced by longitudinal dipole motion 1658 bunches, 3 A

65 Working group on rf and feedback
What are the existing limitations of high power rf systems? scrf and warm both reliable and mature technologies Harmonic cavities need further development What are the present limitations of multi-bunch feedback systems? Damage from beam-induced power What advances need to be achieved to increase the beam currents to 5 to 10 amperes per beam with 1 to 2 nsec spacing and an energy of a few GeV? KEK-B increasing stored energy in cavity system + power coupler and HOM absorber improvements PEP-II installing more linear klystrons + developing woofer link to rf systems Detailed fault analysis capabilities – llrf diagnostics

66 Working group on rf and feedback
What will the future low mode feedback systems look like? Will parallel medium-power amplifiers around high power klystrons help with beam instabilities? To be determined, requires study of power needs and power combiner What are the future requirements of bunch-by-bunch high frequency feedbacks? Digital processing diagnostics “High” frequency to provide gain on quadrupole modes Develop transverse kickers with reasonable impedance at ~ GHz


Download ppt "Working group on rf and feedback"

Similar presentations


Ads by Google