Download presentation
Presentation is loading. Please wait.
1
Progress on the Linac and RLAs
Alex Bogacz, Vasiliy Morozov, Yves Roblin, Jefferson Lab Kevin Beard, Muons Inc. Morteza Aslaninejad, Cristian Bontoiu, Jürgen Pozimski Imperial College
2
Linac and RLAs – ‘Big picture’
1st part of this talk 0.6 GeV/pass 3.6 GeV 0.9 GeV 244 MeV 146 m 79 m 2 GeV/pass 264 m 12.6 GeV 2nd part of this talk IDS Goals: Define beamlines/lattices for all components Resolve physical interferences, beamline crossings etc Error sensitivity analysis End-to-end simulation (machine acceptance) Component count and costing EUROnu Jan. 2011
3
RLA Lattice Studies - Status
Presently completed lattices Linear pre-accelerator – solenoid focusing 4.5 pass Dogbone RLA × 2 (RLA I + RLA II) Optimized multi-pass linac optics (bisected - quad profile along the linac) Droplet return arcs (4) matched to the linacs Transfer lines between the components – injection chicanes Droplet arcs crossing – Double achromat Optics design Chromatic corrections with sextupoles at Spr/Rec junctions Error analysis for the Arc lattices (proof-or-principle) Magnet misalignment tolerance – DIMAD Monte Carlo Simulation Focusing errors tolerance – betatron mismatch sensitivity Piece-wise end-to-end simulation with OptiM (pre-accelerator + RLA I) EUROnu Jan. 2011
4
Muon Acceleration Mini-workshop
Feb 2-5, 2010
5
Solenoid Linac ( MeV) 6 short cryos 15 MV/m 8 medium cryos 17 MV/m 11 long cryos 1.1 Tesla solenoid 1.4 Tesla solenoid 2.4 Tesla solenoid Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc = 150 mm 146 Sat Dec 13 22:36: OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y EUROnu Jan. 2011
6
Linac – tracking studies
DONE SO FAR: shielded two-shell solenoid modeled with POISSON RF cavities modeled with SUPERFISH, COMSOL, & CST front-to-end lattice for OptiM (solenoids, dipoles, quadrupoles, & sextupoles) linac lattice tested in MAD-X beam tracking using GPT optical match of linac to cooling channel with one solenoid beam-loading effects evaluated as negligible standard for exchanging data files proposed EUROnu Jan. 2011
7
Solenoid Model (Superfish)
outer coil shield inner coil ‘Soft-edge’ Solenoid EUROnu Jan. 2011
8
Two-cell cavity (201 MHz) – COMSOL
Morteza Aslaninejad Cristian Bontoiu Jürgen Pozimski EUROnu Jan. 2011
9
Initial phase-space after the cooling channel at 220 MeV/c
Linac-RLA Acceptance Initial phase-space after the cooling channel at 220 MeV/c bx,y = 2.74 m ax,y = bg = 2.08 EUROnu Jan. 2011
10
Linac Optics – Beam envelopes
EUROnu Jan. 2011 146 Thu Apr 08 13:54: OptiM - MAIN: - C:\Working\IDS\PreLinac\Linac_sol.opt 30 Size_X[cm] Size_Y[cm] Ax_bet Ay_bet Ax_disp Ay_disp Transverse acceptance (normalized): (2.5)2eN = 30 mm rad Longitudinal acceptance: (2.5)2 sDpsz/mmc = 150 mm
11
Linac Optics – OptiM vs ELEGANT
146 Sat Dec 13 22:36: OptiM - MAIN: - D:\IDS\PreLinac\Sol\Linac_sol.opt 12 5 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y a = 19.5 cm a = 19.5 cm Yves Roblin EUROnu Jan. 2011
12
Longitudinal phase-space tracking
MATHCAD OptiM Initial distribution Kevin Beard Alex Bogacz ELEGANT MATLAB Yves Roblin Morteza Aslaninejad EUROnu Jan. 2011
13
Cooling Channel – Linac Optics
b B|| a EUROnu Jan. 2011
14
GPT Particle Tracking in the Linac
cooling -> upper linac upper -> middle linac EUROnu Jan. 2011
15
Linac and RLAs - ‘field map’ tracking
TO DO NEXT: Include cavity filling effect on accelaration Get a more accurate initial distribution Design an improved cooling-to-linac section Upgrade analytic cavity phasing – check against GPT Complete linac lattice via tuning solenoids, phasing cavities, & tracking with GPT EUROnu Jan. 2011
16
Linac-to-Arc – Chromatic Compensation
E =1.8 GeV Wed Jun 11 13:14: OptiM - MAIN: - D:\IDS\Linacs_short\Linac1_fudg.opt 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 72 Wed Jun 11 14:08: OptiM - MAIN: - D:\IDS\Arcs\Arc2_match.opt ‘Matching quads’ are invoked No 900 phase adv/cell maintained across the ‘junction’ Chromatic corrections needed – two pairs of sextupoles EUROnu Jan. 2011
17
Linac-to-Arc - Chromatic Corrections
initial uncorrected two families of sextupoles EUROnu Jan. 2011
18
Mirror-symmetric ‘Droplet’ Arc – Optics
130 Tue Jun 10 21:14: OptiM - MAIN: - D:\IDS\Arcs\Arc1.opt 15 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E =1.2 GeV (bout = bin and aout = -ain , matched to the linacs) 2 cells out transition 2 cells out 10 cells in transition EUROnu Jan. 2011
19
Multi-pass FFAG Arc Basic cell
EUROnu Jan. 2011 Multi-pass FFAG Arc 2 or more passes through the same arc e.g. 5 GeV and 9 GeV NS-FFAG arc lattice design Achromatic basic cell with 90 horizontal phase advance Automatic matching between inward and outward bending cells Linear optics understood Need to incorporate sextupole and higher-order field components to accommodate higher momenta Basic cell example trajectories dispersion Vasiliy Morozov COSY Infinity IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010
20
Multi-pass FFAG Arc 300 60 simple closing of geometry
EUROnu Jan. 2011 Multi-pass FFAG Arc Vasiliy Morozov simple closing of geometry when using similar cells r = 38.5 meters 300 60 C = 302 meters IDS-NF 5-th Plenary Mtg. Fermilab, April 9, 2010
21
Proposed SDDS Exchange Format
ZGOUBI ELEGANT G4beamline ICOOL OptiM COSY-Infinity MAD-X GPT … Kevin Beard EUROnu Jan. 2011
22
Summary Critical components of front-end linac modeled
Initial design of the front-end linac simulated Design matching sections simulated RLA arc lattice + chromaticity compensation simulated Putting the pieces together for end-to-end simulations Multi-pass (2) FFAG Arcs? EUROnu Jan. 2011
23
Alex Bogacz, V.Morozov, Y.Roblin
Recent Progress on the Linac and RLAs Recent Progress on the Linac and RLAs Kevin B. Beard, Muons,Inc. & Alex Bogacz, V.Morozov, Y.Roblin Jefferson Lab LEMC2009 workshop 8-12 Jun 2009
24
244 MeV 0.9 GeV 0.6 GeV/pass 3.6 GeV 12.6 GeV 2 GeV/pass
Recent Progress on the Linac and RLAs 0.6 GeV/pass 3.6 GeV 0.9 GeV 244 MeV 146 m 79 m 2 GeV/pass 264 m 12.6 GeV LEMC2009 workshop 8-12 Jun 2009
25
Linear Pre-accelerator – 244 MeV to 909 MeV
6 short cryos 15 MV/m 8 medium cryos 17 MV/m 11 long cryos 1.1 Tesla solenoid 1.4 Tesla solenoid 2.4 Tesla solenoid Transverse acceptance (normalized): (2.5)2= 30 mm rad Longitudinal acceptance: (2.5)2 pz/mc= 150 mm 8m 3m 5m Mini-workshop on Low Energy Muon Acceleration, CNU, February 2-5 , 2010
26
Why another simulation?
OptiM – fast, interactive, design, matrix based 0th order design tool, symplectic soft edge solenoids, very good at tuning (free) GPT – good at tracking ($) G4beamline – tracking, Geant4 particle decays & interactions, energy depositions, showers, etc., not so good at tuning (free & open source) (v2.06) LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010
27
LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010
28
G4beamline input file z18.in
... # The "default" physics list is QGSP_BERT physics QGSP_BERT disable=Decay ###################### begin: common info ################################# # physical constants: param deg= /180. param muonmass= param c_mm_nS= upperCryomodule $Zcryo1 $j1 $Toff1 $kill1 upperCryomodule $Zcryo2 $j2 $Toff2 $kill2 upperCryomodule $Zcryo3 $j3 $Toff3 $kill3 upperCryomodule $Zcryo4 $j4 $Toff4 $kill4 upperCryomodule $Zcryo5 $j5 $Toff5 $kill5 upperCryomodule $Zcryo6 $j6 $Toff6 $kill6 middleCryomodule $Zcryo7 $j7 $Toff7 $kill7 middleCryomodule $Zcryo8 $j8 $Toff8 $kill8 middleCryomodule $Zcryo9 $j9 $Toff9 $kill9 middleCryomodule $Zcryo10 $j10 $Toff10 $kill10 middleCryomodule $Zcryo11 $j11 $Toff11 $kill11 middleCryomodule $Zcryo12 $j12 $Toff12 $kill12 middleCryomodule $Zcryo13 $j13 $Toff13 $kill13 middleCryomodule $Zcryo14 $j14 $Toff14 $kill14 lowerCryomodule $Zcryo15 $j15 $Toff15a $Toff15b $kill15 lowerCryomodule $Zcryo16 $j16 $Toff16a $Toff16b $kill16 lowerCryomodule $Zcryo17 $j17 $Toff17a $Toff17b $kill17 lowerCryomodule $Zcryo18 $j18 $Toff18a $Toff18b $kill18 lowerCryomodule $Zcryo19 $j19 $Toff19a $Toff19b $kill19 lowerCryomodule $Zcryo20 $j20 $Toff20a $Toff20b $kill20 lowerCryomodule $Zcryo21 $j21 $Toff21a $Toff21b $kill21 solenoid RF timing center Only 534 non-comment lines, produces 244 virtual detectors, 25 cryomodules beam stop LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.
29
Conclusions G4beamline model is working well and in general agreement with other simulations Essential step toward our long term goal of complete end-to-end simulations Fine tuning is still in progress Will soon begin particle interactions with the hardware LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.
30
Ez Ez LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010 Muons, Inc.
31
phases partially adjusted
phases from spreadsheet LEMC2009 workshop 8-12 Jun 2009 Aug 31, 2010
32
Comparison of GPT, OptiM, g4beamline
KE[MeV] z[cm] G4beamline w/adj. φ's OptiM G4beamline w/OptiM's φ's KE[MeV] LEMC2009 workshop 8-12 Jun 2009 z[cm] Muons, Inc. MAG, Jun 14, 2010
33
Every 3rd solenoid (adjusted from oncrest)
800 ET [MeV] 22nS t[nS] LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.
34
GPT G4beamline y[m] LEMC2009 workshop 8-12 Jun 2009 z[m] z[m]
Sep 14, 2010 Muons, Inc.
35
lost LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010
36
those that made it to the end in G4beamline
input t,Pz for acceptance OptiM generated input LEMC2009 workshop 8-12 Jun 2009 Sep 14, 2010 Muons, Inc.
37
Fine tuning is still in progress
Synchrotron motion Pz ~ oncrest ~ 1 synch period LEMC2009 workshop 8-12 Jun 2009 t t Sep 14, 2010 G4beamline model is working well and in general agreement with other simulations Essential step toward our long term goal of complete end-to-end simulations Fine tuning is still in progress Will soon begin particle interactions with the hardware
38
∘RF ~ oncrest ~ 1 synch period #m LEMC2009 workshop 8-12 Jun 2009 z[m]
Sep 14, 2010 z[m] Muons, Inc.
39
LEMC2009 workshop 8-12 Jun 2009
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.