Presentation is loading. Please wait.

Presentation is loading. Please wait.

SNMPv1 (cont’d) & SNMPv2 (II)*

Similar presentations


Presentation on theme: "SNMPv1 (cont’d) & SNMPv2 (II)*"— Presentation transcript:

1 SNMPv1 (cont’d) & SNMPv2 (II)*
*Mani Subramanian “Network Management: Principles and practice”, Addison-Wesley, 2000.

2 SNMP Network Management
SNMP Protocol Specs SNMP Operations GetRequest-PDU GetNextRequest-PDU SetRequest-PDU GetResponse-PDU Trap-PDU Polling Frequency and limitations of SNMP v1 SNMPv2

3 Communication Model Communicate mgnt information between network mgnt stations and managed elements Goals: Management functions maintained by agents are kept simple Protocol flexibility (addition of new aspects of operation and management) Transparency (should not be affected by the architecture of particular hosts and gateways) Operation: 5 messages get-request, get-next request, set-request get-response, trap SNMP messages are exchanged using UDP (connection less) transport protocol

4 Message Format version community data
Protocol entities support application entities Communication between remote peer processes Message consists of : Version identifier Community name Protocol Data Unit Message encapsulated in UDP datagrams and transmitted Loss of message  time out! Like FTP, SNMP uses two well-known ports to operate: UDP Port SNMP Messages UDP Port SNMP Trap Messages Size of SNMP message: 1472 bytes

5 Message Format version community data SNMP message format is defined using ASN.1, encoded for transmission over UDP using BER Message ::= SEQUENCE { version INTEGER {version-1(0)}, community OCTET STRING, data PDUs } 3 different versions: SNMPv1, SNMPv2, SNMPv3

6 Message Format-Set/Get PDU
version community data Message ::= SEQUENCE { version INTEGER {version-1(0)}, community OCTET STRING, data PDUs } PDUs::= CHOICE { get-request [0] IMPLICIT PDU, get-next-request [1] IMPLICIT PDU, get-response [2] IMPLICIT PDU, set-request [3] IMPLICIT PDU, trap [4] IMPLICIT Trap-PDU }

7 Message Format-Set/Get PDU
request- id error- status variable-bindings error- index PDU- type request-id: track a message and indicate loss of a message (e.g., timeout, etc.) error-status: indicate the occurrence of error error-index: indicate the occurrence of error (position in the list of variables) variable-bindings: grouping of number of operations in a single message: e.g., one request to get all values and one response listing all values PDU ::= SEQUENCE { request-id INTEGER, error-status INTEGER { noError (0), tooBig (1), noSuchName(2), badValue (3), readOnly (4), genErr (5) }, error-index INTEGER, variable-bindings VarBindList }

8 Message Format-variable bindings
name value var-bind 1 var-bind 2 var-bind n . . . VarBindList ::= SEQUENCE OF VarBind VarBind ::= SEQUENCE { name ObjectName, value ObjectSyntax } ObjectName ::= OBJECT IDENTIFIER ObjectSyntax ::= CHOICE { simple SimpleSyntax, application-wide ApplicationSyntax }

9 Message Format-variable bindings
SimpleSyntax ::= CHOICE { number INTEGER, string OCTET STRING, object OBJECT IDENTIFIER, empty NULL } ApplicationSyntax::= CHOICE { address NetworkAddress, counter Counter, gauge Gauge, ticks TimeTicks, arbitrary Opaque } NetworkAddress::= CHOICE { internet IpAddress }

10 Message Format-Trap PDU
Entreprise Agent Address variable-bindings Generic Trap Type PDU- type Specific Time Stamp Trap-PDU ::= SEQUENCE { enterprise OBJECT IDENTIFIER, agent-addr NetworkAddress, generic-trap INTEGER { coldStart (0), warmStart (1), linkDown (2), linkUp (3), authenticationFailure(4), egpNeighborLoss (5), enterpriseSpecific (6) }, specific-trap INTEGER, time-stamp TimeTicks, variable-bindings VarBindList } Pertain to the system generating the trap (sysObjectID) -IP address of the objetc Specific code to identify the trap cause… Elapsed time since last re-initialization

11 SNMP Network Management
SNMP Protocol Specs SNMP Operations GetRequest-PDU GetNextRequest-PDU SetRequest-PDU GetResponse-PDU Trap-PDU Polling Frequency and limitations of SNMP v1 SNMPv2

12 SNMP Operations An SNMP entity performs the following to transmit a PDU Construct a PDU using ASN.1 Pass PDU to Authentication Service (AS) along with s-d transport addresses and community name AS returns a PDU that is encrypted (if encryption is supported) The Protocol entity then constructs an SNMP message by adding the version field and the community name to the PDU Message is encoded using BER and it is passed to the transport service An SNMP entity performs the following upon reception of an SNMP message Basic syntax check, message is discarded in case of error Verifies the version number--message discarded if there is mismatch Authentication (if supported): if message does not authenticate, generate trap and discard message. Finally, using the community name, the access policy is selected and PDU is processed

13 GetRequest PDU Sender includes the following fields:
sysServices (7) sysLocation (6) sysDescr (1) system (mib-2 1) sysObjectId (2) sysUpTime (3) sysName (5) sysContact (4) Sender includes the following fields: PDU Type request-id Variable-bindings A list of object instances whose values are requested SNMP dictates that a scalar object is identified by its OBJECT-IDENTIFIER concatenated with 0 e.g., sysDescr.0: distinguishes between the object type and an instance of the object

14 GetRequest PDU .0 indicates that the scalar value should be retrieved (scalar objects only) Manager Agent Process Process GetRequest (sysDescr.0) GetResponse (sysDescr .0= "SunOS" ) GetRequest (sysObjectID.0) GetResponse ( sysObjectID.0=enterprises ) GetRequest (sysUpTime.0) GetResponse (sysUpTime.0= ) GetRequest (sysContact.0) GetResponse (sysContact.0=" ") GetRequest (sysName.0) GetResponse (sysName.0="noc1 ") GetRequest (sysLocation.0) GetResponse (sysLocation.0=" ") GetRequest (sysServices.0) GetResponse (sysServices.0=72) A managed object should implement the system group. The manager by detecting the object, it will poll the new object to learn the values of objects in the system group The manager could have used only one message to obtain the values of all objects under system group: using “variable binding list”

15 GetRequest PDU Get Request is atomic
Either all values (of all variables provided in the binding list) retrieved or none error message is generated if at least one of the variables could not be found/returned; error-status: noSuchName tooBig genErr error-index: indicate the problem object (i.e., variable in binding list that caused the problem) With SNMP, only leaf objects in the MIB can be retrieved e.g. it is not possible to retrieve an entire row of a table by simply accessing the Entry Object (e.g., ipRouteEntry)  the management stations has to include each object instance (in the row) in the binding list By including the complete object identifier and respecting the rule of indexing!

16 GetRequest PDU ipRouteDest ipRouteMetric1 ipRouteNextHop
Index of table GetRequest (ipRouteDest , ipRouteMetric , ipRouteNextHop )

17 GetNextRequest PDU PDU format: Difference:
sysServices (7) sysLocation (6) sysDescr (1) system (mib-2 1) sysObjectId (2) sysUpTime (3) sysName (5) sysContact (4) PDU format: same as GetReqest Difference: each variable in the binding list refers to an object instance next in the lexicographic order GetNextRequest (sysDescr.0)  return the value of the object instance of sysObjectId Advantages: Allows a network manager to discover a MIB structure dynamically Efficient way for searching through tables whose entries are unknown

18 GetNextRequest PDU Error message: no object next to sysServices
Manager Agent Process Process GetRequest (sysDescr.0) GetResponse (sysDescr .0= "SunOS" ) GetNextRequest (sysDescr.0) GetResponse ( sysObjectID.0=enterprises ) GetNextRequest (sysObjectID.0) GetResponse (sysUpTime.0= ) GetNextRequest (sysUpTime.0) GetResponse (sysContact.0=" ") GetNextRequest (sysContact.0) GetResponse (sysName.0="noc1 ") GetNextRequest (sysName.0) GetResponse (sysLocation.0=" ") GetNextRequest (sysLocation.0) GetResponse (sysServices.0=72) GetNextRequest (sysServices.0) GetResponse (noSuchName) Error message: no object next to sysServices Get-Next-Request Operation for System Group

19 Generalized Case A sample MIB that contains both scalar values and aggregate objects Retrieving scalar as well as aggregate objects using get-request and get-next-request T Z A B 1.1 E 2.1 3.1 1.2 2.2 3.2

20 Generalized Case A Manager Agent Process Process B GetRequest ( A )
GetResponse ( A ) GetRequest ( B ) T GetResponse ( B ) GetRequest (T.E.1.1) GetResponse ( T.E.1.1 ) E GetRequest (T.E.1.2) GetResponse ( T.E.1.2 ) GetRequest (T.E.2.1) T.E.1.1 T.E.2.1 T.E.3.1 GetResponse ( T.E.2.1 ) GetRequest (T.E.2.2) GetResponse ( T.E.2.2 ) T.E.1.2 T.E.2.2 T.E.3.2 GetRequest (T.E.3.1 ) GetResponse ( T.E.3.1 ) GetRequest (T.E.3.2 ) Z GetResponse ( T.E.3.2 ) GetRequest (Z ) GetResponse ( Z )

21 Generalized Case Observations:
1)- we need to know all the elements in the MIB, including the # of columns and rows in a table 2)- a MIB is traversed from top to bottom (i.e., from left to right in the tree structure) 3)- data in tables is retrieved by traversing all instances of a columnar object NOTES: 1)- dynamic table: # rows may not be known to manager A request to T.E.1.3 results in error message 3)- GetNextRequest could avoid this! 4)- A convention is required for the definition of the next object in a MIB  SNMP uses lexicographic convention A B T E T.E.1.1 T.E.2.1 T.E.3.1 T.E.1.2 T.E.2.2 T.E.3.2 Z

22 Lexicographic Convention
Procedure for ordering Start with leftmost digit as first position Before increasing the order in the first position, select the lowest digit in the second position Continue the process till the lowest digit in the last position is captured Increase the order in the last position until all the digits in the last position are captured Move back to the last but one position and repeat the process Continue advancing to the first position until all the numbers are ordered Tree structure for the above process

23 Lexicographic Ordring- example
start end 3 9 1 2 18 5 6 10 21 4 MIB example of lexicographic ordering

24 GetNextRequest PDU T.E.1.1 is next object to scalar B GetRequest ( A )
GetResponse ( A ) GetNextRequest ( A ) GetResponse ( B ) GetNextRequest ( B ) GetResponse ( T.E.1.1 ) GetNextRequest (T.E.1.1 ) GetResponse ( T.E.1.2 ) GetNextRequest (T.E.1.2 ) GetResponse ( T.E.2.1 ) GetNextRequest (T.E.2.1 ) GetResponse ( T.E.2.2 ) GetNextRequest (T.E.2.2 ) GetResponse ( T.E.3.1 ) GetNextRequest (T.E.3.1 ) GetResponse ( T.E.3.2 ) GetNextRequest (T.E.3.2 ) GetResponse ( Z ) GetNextRequest ( Z ) GetResponse ( noSuchName ) Manager Process Agent T.E.1.1 T.E.2.1 T.E.3.1 T.E.1.2 T.E.2.2 T.E.3.2 E T Z A B T.E.1.1 is next object to scalar B

25 GetNextRequest PDU Advantages of Get-Next-Request
GetRequest ( A ) GetResponse ( A ) GetNextRequest ( A ) GetResponse ( B ) GetNextRequest ( B ) GetResponse ( T.E.1.1 ) GetNextRequest (T.E.1.1 ) GetResponse ( T.E.1.2 ) GetNextRequest (T.E.1.2 ) GetResponse ( T.E.2.1 ) GetNextRequest (T.E.2.1 ) GetResponse ( T.E.2.2 ) GetNextRequest (T.E.2.2 ) GetResponse ( T.E.3.1 ) GetNextRequest (T.E.3.1 ) GetResponse ( T.E.3.2 ) GetNextRequest (T.E.3.2 ) GetResponse ( Z ) GetNextRequest ( Z ) GetResponse ( noSuchName ) Manager Process Agent Advantages of Get-Next-Request 1)- no need to know the object ID of the next entity to retrieve its value 2)- issues with dynamic table resolved 3)- allows NMS to discover the structure of a MIB view dynamically 4)- provides an efficient mechanism for searching a table whose entries are unknown

26 Lexicographic Ordring- example
ipRouteDest ipRouteMetric1 ipRouteNextHop ipRouteTable ipRouteEntry = x ipRouteDest x.1 ipRouteMetric1 x.3 ipRouteNextHop x.7 ipRouteDest x ipRouteDest x ipRouteDest x ipRouteMetric x ipRouteMetric x ipRouteMetric x ipRouteNextHop x ipRouteNextHop x ipRouteNextHop x Index of table

27 Accessing Table Values
ipRouteDest ipRouteMetric1 ipRouteNextHop Retrieving the entire table w/out knowing its contents or number of rows: GetNextRequest (ipRouteDest, ipRouteMetric1, ipRouteNextHop)  The agent will respond with the values from the first row GetResponse ((ipRouteDest = ), (ipRouteMetric = 3), (ipRouteNextHop = ))  The MS stores this info and retrieves the second row

28 Accessing Table Values
ipRouteDest ipRouteMetric1 ipRouteNextHop GetNextRequest (ipRouteDest , ipRouteMetric , ipRouteNextHop ) GetResponse ((ipRouteDest = ), (ipRouteMetric = 5), (ipRouteNextHop = )) GetNextRequest (ipRouteDest , ipRouteMetric , ipRouteNextHop ) GetResponse ((ipRouteDest = ), (ipRouteMetric = 5), (ipRouteNextHop = ))

29 Accessing Table Values
ipRouteDest ipRouteMetric1 ipRouteNextHop What happens next!, When does the MS stop? GetNextRequest (ipRouteDest , ipRouteMetric , ipRouteNextHop ) GetResponse ((ipRouteMetric = 3), (ipRouteNextHop = ), (ipNetToMediaIfIndex.1.3 = 1)) Object names in the list in the response does not match those in the request  MS knows it has reached the end of the table

30 SetRequest-PDU Write a value rather than reading a variable
The operation is atomic: either all variables in binding list are updated or none Procedure receive-SetRequest: begin if object not available for set then issue getresponse (noSuchName, index) else if inconsistent object value then issue getresponse (badValue, index) else if generated PDU too big then issue getresponse (tooBig) else if value not settable for some other reason then issue getresponse (genErr, index) else issue getresponse (variable bindings) end;

31 SetRequest-PDU-example
ipRouteDest ipRouteMetric1 ipRouteNextHop Updating the value of ipRouteMetric1 metric of the first row: SetRequest (ipRouteMetric = 9) GetResponse (ipRouteMetric = 9) Adding a row to the table -- a MS issues a command: SetRequest ((ipRouteDest = ), (ipRouteMetric = 9), (ipRouteNextHop = )) Index of the new object instance in the table But this is currently unknown for the agent!

32 SetRequest-PDU-example
Adding a row to the table -- a MS issues a command: SetRequest ((ipRouteDest = ), (ipRouteMetric = 9), (ipRouteNextHop = )) If only this argument is passed, then the agent may accept or not; if it accepts to create the row, then the other objects are assigned default values Three ways for the agent to handle the request: 1)- reject the operation with error-status = noSuchName 2)- recognize the operation (as creation of a new row) and check whether the operation can be accepted (i.e., all values are correct, no syntax error, etc..) 2.1)- if NO, then return error-status = badValue 2.2)- if YES, then new row is created and GetResponse ((ipRouteDest = ), (ipRouteMetric = 9), (ipRouteNextHop = ))

33 SetRequest-PDU-example
Row Deletion: SetRequest (ipRouteMetric = invalid) GetResponse (ipRouteMetric = invalid) Some other tables may/may not allow any operation to be done on its columnar objects – check RFCs for more details Performing an action: SNMP can read and set values of objects. SNMP can also issue commands to perform certain actions: example, a device may have a flag “reBoot”, if it is set by the manager, then the device will reboot.

34 Get-Response Message from Agent-to-Manager
Sniffer Data 13:55: noc3.btc.gatech.edu.164 > noc1.btc.gatech.edu.snmp: Community = public GetRequest(111) Request ID = 1 system.sysObjectID.0 system.sysUpTime.0 system.sysContact.0 system.sysName.0 system.sysLocation.0 system.sysServices.0 Get-Request Message from Manager-to-Agent 13:55: noc1.btc.gatech.edu.snmp > noc3.btc.gatech.edu.164: Community = public GetResponse(172) Request ID = 4 system.sysDescr.0 = "SunOS noc Generic_ sun4u" system.sysObjectID.0 = E:hp system.sysUpTime.0 = system.sysContact.0 = "" system.sysName.0 = "noc1" system.sysLocation.0 = "" system.sysServices.0 = 72 Get-Response Message from Agent-to-Manager

35 Get-Response Message from Agent-to-Manager
Sniffer Data 13:56: noc3.btc.gatech.edu.164 > noc1.btc.gatech.edu.snmp: Community = netman SetRequest(41) Request ID = 2 system.sysContact.0 = “Brandon Rhodes” Set-Request Message from Manager-to-Agent 13:56: noc1.btc.gatech.edu.snmp > noc3.btc.gatech.edu.164: Community = netman GetResponse(41) Request ID = 2 system.sysContact.0 = " Brandon Rhodes " Get-Response Message from Agent-to-Manager

36 Get-Response Message from Agent-to-Manager
Sniffer Data 14:03: noc3.btc.gatech.edu.164 > noc1.btc.gatech.edu.snmp: Community = public GetRequest(111) Request ID = 4 system.sysDescr.0 system.sysObjectID.0 system.sysUpTime.0 system.sysContact.0 system.sysName.0 system.sysLocation.0 system.sysServices.0 Get-Request Message from Manager-to-Agent 14:03: noc1.btc.gatech.edu.snmp > noc3.btc.gatech.edu.164: Community = public GetResponse(196) Request ID = 4 system.sysDescr.0 = "SunOS noc Generic_ sun4u" system.sysObjectID.0 = E:hp system.sysUpTime.0 = system.sysContact.0 = "Brandon Rhodes" system.sysName.0 = "noc1" system.sysLocation.0 = "BTC NM Lab" system.sysServices.0 = 72 Get-Response Message from Agent-to-Manager

37 SNMP Network Management
SNMP Protocol Specs SNMP Operations GetRequest-PDU GetNextRequest-PDU SetRequest-PDU GetResponse-PDU Trap-PDU Polling Frequency and limitations of SNMP v1 SNMPv2

38 Polling Frequency Few traps exist in the standard!
Thus most of the management information is gathered by means of polls (GetRequest, GetNextRequest) If polling is done un-frequently A MS may have outdated view of the network (e.g., congestion might happen and the NM may not be alerted) If polling is done frequently The control messages overhead will be high and degrade the performance Polling frequency requires some policy definition e.g., size of the network (i.e., #agents a MS can handle)

39 Polling Frequency Assumption: assume the MS can handle only one agent at a time (i.e., when polling an agent, a MS does no other work until it is done) A poll may involve a single get/response transaction or multiple such transactions The maximum number of agents a MS can handle, considering that it is engaged full time in polling is: N  (T/) N: number of agents T: desired polling interval : average time required to perform a single poll T Agent 1 Agent 2 Agent N

40 Polling Frequency  depends on multiple factors: Example
Processing time to generate a request at the MS Network delay from MS to agent Processing time at the agent to interpret the received message Processing time at the agent to generate response Network delay from agent to manager Processing time at the manager to interpret the message Number of request/response transactions to obtain all desired info. Example Devices on a LAN; each device is to be polled every 15 minutes Processing times = 50ms; Network delay = 1ms (no network congestion) N  (1560/) = 4,500 Where  = = 202 ms

41 Polling Frequency Summary: 4 critical parameters
In WAN, network delays are significantly large (order of 0.5s) Data rates on WANs are less than LANs Distances are greater (delays are higher, e.g. 0.5 seconds) Delays introduced by bridges and routers N  (1560/) = 750 Where  = (4 0.05) + (20.5) Summary: 4 critical parameters # agents Processing time of a message Network delays Polling interval

42 Some Limitations of SNMPv1
SNMP may not be suitable for the mgmt of truly large networks because of the performance limitations of polling SNMP is not well suited for retrieving large volumes of data, such as an entire routing table SNMP traps are unacknowledged & may not be delivered SNMP provides only trivial authentication i.e. it is suitable for monitoring rather than control SNMP does not support explicit actions i.e., an action is taken by changing a parameter or setting an object value (indirectly) SNMP does not support manager-to-manager communications Many of these problems are addressed in SNMPv2!

43 SNMP Network Management
SNMP Protocol Specs SNMP Operations GetRequest-PDU GetNextRequest-PDU SetRequest-PDU GetResponse-PDU Trap-PDU Polling Frequency and limitations of SNMP v1 SNMPv2

44 Major Changes Bulk data transfer
Request and receive bulk data using the get-bulk message Manager-to-manager message Enhances interoperability and allows for managing large distributed networks Enhancements to SMI: SMIv2 Module definitions: MODULE-IDENTITY macro Object definitions: OBJECT-TYPE macro (same as before) Trap definitions: NOTIFICATION-TYPE macro Textual conventions: define new data types Conformance statements Help customers compare features of various products Keeps vendors open to their product’s compatibility with SNMP

45 Major Changes Row creation and deletion in table
A table can also be expanded by augmenting another table MIB enhancements Two new subgroups: security and snmpV2 Transport mappings UDP remains the preferred transport protocol; however, other protocols can also be used with SNMPv2 Security features, originally to be in SNMPv2 moved to SNMPv3 SNMPv2 is community-based administrative framework SNMPv2 mgmt (2) directory (1) experimental (3) private (4) Internet { } security (5) snmpv2 (6) SNMPv2 Internet Group

46 SNMPv2 System Architecture
SNMP Manager Application response get-bulk-request get-next-request set-request snmpV2-trap SNMP UDP IP DLC PHY Physical Medium PDU get-request inform-request SNMP Agent

47 Additional Messages inform-request manager-to-manager message
The receiving manager responds with a response message Enhances interoperability get-bulk-request transfer of large data, e.g. retrieval of table data SNMPv2-trap Similar to trap messages in SNMPv1

48 SMIv2- Modules Definitions
Defines and describe semantics of an information module (info. related to network management) added to provide administrative information regarding the informational module and the revision history MODULE-IDENTITY macro defines the module definitions

49 SMIv2- Object Definitions
OBJECT IDENTIFIER, OBJECT-IDENTITY, OBJECT-TYPE OBJECT IDENTIFIER defines the administrative identification of a node in the MIB OBJECT-IDENTITY macro (defines info. about OID) assigns an object identifier to a class of managed objects in the MIB (e.g., defining a class of routers!) The object itself is not managed OBJECT-TYPE macro defines the type of a managed object (e.g., a specific router type) Focuses on the details of implementation NOTE: OBJECT-IDENTITY is high level description OBJECT-TYPE details description needed for implementation

50 Object Definitions, example
NOTE: A specific instance of routerIsi123 could be identified by its IP address

51 Table Definition Static Tables Dynamic Table
Tables completely controlled by the agent. Access is read-only, and read-write These are useful when the number of rows corresponds to a fixed attribute (e.g., # physical interfaces) or a quantity controlled only by agent Dynamic Table Allows row creation/deletion by a manager Access includes also read, write and create privileges A table can be initialized with no rows and expanded as needed SNMPv2: Augmentation of a table (dependent table) Adds additional columns to an existing table (base table) Number of rows is not affected INDEX of the second table is the same as the first table One to one correspondence between rows of two tables

52 Augmentation of Tables
Base table Table 1 Augmented table table1 table 2 (T1) (T2) table1Entry table2Entry (E1) (E2) T1.E1.C1.1 T1.E1.C2.1 T1.E1.C3.1 T2.E2.C4.1 T2.E2.C5.1 T1.E1.C1.2 T1.E1.C2.2 T1.E1.C3.2 T2.E2.C4.2 T2.E2.C5.2 T1.E1.C1.3 T1.E1.C2.3 T1.E1.C3.3 T2.E2.C4.3 T2.E2.C5.3 T1.E1.C1.4 T1.E1.C2.4 T.E1.C3.4 T2.E2.C4.4 T2.E2.C5.4 Example Columnar object:T2.E2.C4 Index: T1.E1.C1.2 Value: T2.E2.C4.2 Conceptual rows: 1. T1.E1.C1.1 2. T1.E1.C1.2 3. T1.E1.C1.3 4. T1.E1.C1.4 Index: First columnar object in Table 1

53 Augmentation of Tables
--Conceptual row extension A clause used to increase the number of columns in a table w/out rewriting the table definition Example: a vendor can easily specify vendor-specific objects as extensions to standard MIB table. It should be easier for applications to access these objects than if they were defined as new, separate table The resulting table is therefore treated the same way as if it was defined in a single table definition

54 Row Creation A new feature in SMIv2 2 methods
Create a row and make it active (or available) Create a row and make it available at a later time  definition of the status of a row Used by agent to send responses to a manager Used by manager for row creation/deletion

55 2 states for RowStatus: createAndGo, createAndWait
Row Creation table1 entry1 status.1 index.1 data.1 status.2 index.2 data.2 status.3 index.3 data.3 Row to be created/deleted 2 states for RowStatus: createAndGo, createAndWait

56 Create and Go Manager initiates a SetRequest-PDU to create a new row
Agent Managed Process Process Entity SetRequest ( status.3 = 4, index.3 = 3, data.3 = DefData ) Create Instance Response ( status.3 = 1, index.3 = 3, data.3 = DefData ) Instance Created Manager initiates a SetRequest-PDU to create a new row status = 4, i.e., create and go Agent interacts with the management entity and successfully create an instance; subsequently a response is transmitted to the manager status = 1, indicates that the row is active

57 Create and Wait Manager Agent Process Process SetRequest (
status.3 = 5, index.3 = 3 ) Create and wait, no default data specified Response ( status.3 = 3, index.3 = 3 ) Agent responds with “notReady” (no default value) GetRequest ( data.3 ) Get the data for the row Response ( data.3 = noSuchInstance) Data value is missing SetRequest ( data.3 = DefData ) Value of data is sent Response ( status.3 = 2 Agent responds with notInServcie status.3 = 1 ) Manager requests to activate the row Row activated

58 Row Deletion SetRequest ( status.3 = 6 ) Response ( Manager Process
Agent Managed Entity Delete Instance Instance Deleted

59 Textual Conventions Enables defining new data types
Makes semantics of data types consistent and human readable Creates new data types using existing ones and applies restrictions to them An important textual convention in SNMPv2, RowStatus creates and deletes rows SNMPv2 SNMPv1 A string of up to 255 characters (refer to table 6.2 for more rules)

60 Textual Conventions-Macro
TEXTUAL-CONVENTION MACRO ::= BEGIN TYPE NOTATION ::= DisplayPart "STATUS" Status "DESCRIPTION" Text ReferPart "SYNTAX" Syntax VALUE NOTATION ::= value(VALUE Syntax) DisplayPart ::= "DISPLAY-HINT" Text | empty Status ::= "current" | "deprecated" | "obsolete“ ReferPart ::= "REFERENCE" Text | empty ……………………….. END Example: Hundredths ::= TEXTUAL-CONVENTION DISPLAY-HINT “d-2” ... SYNTAX INTEGER ( ) suggests that a Hundredths value of 1234 be rendered as "12.34"

61 Textual Conventions- example
RowStatus ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "The RowStatus textual convention is used to manage the …” SYNTAX INTEGER { -- the following two values are states: -- these values may be read or written active(1), notInService(2), -- the following value is a state: -- this value may be read, but not written notReady(3), -- the following three values are -- actions: these values may be written, -- but are never read createAndGo(4), createAndWait(5), destroy(6) }

62 SNMPv2 Protocol Overall, 8 messages with almost common message format to improve the efficiency and performance Significant improvement is that trap message has the same format PDU Error Error VarBind 1 VarBind 1 VarBind n VarBind n RequestID ... Type Status Index name value name value SNMPv2 PDU Indicate the type of PDU (e.g., Request-PDU, etc) identifies the first variable binding in the variable-binding list that caused the error Indicate the status of the error (e.g., noError, tooBig, etc.) NOTE: SNMPv1 operations (e.g., GET-REQUEST) are atomic: either all values are returned or none! In SNMPv2: a binding list (with corresponding values) is prepared even if one variable cannot be returned  an (error-status), (error-index) are returned in the case of anomaly.

63 SNMPv2 Protocol Error index is set to “0” if there is no error; otherwise, it identifies the first variable binding in the variable binding list that caused the error

64 SNMPv2 Protocol GetBulkRequest enables the retrieval of data in bulk
PDU Non- Max VarBind 1 VarBind 1 VarBind n VarBind n RequestID ... Type Repeaters Repetitions name value name value SNMPv2 GetBulkRequest PDU GetBulkRequest enables the retrieval of data in bulk Uses the same selection principle as GetNexRequest (i.e., next object instance) Retrieval of multiple rows of data from table (constrained by the max. message size) Error status field replaced by Non-repeaters Non-repeaters indicates the number of non repetitive (scalar) field values requested Error index field replaced by Max repetitions Max repetitions designates the maximum number of table rows requested to be returned in the response message NOTE 1: value depends on the size of the SNMP message and buffer size in implementation NOTE 2: no one to one relationship between the VarBindList of request and response messages

65 GetBulkRequest-PDU Operation
Z A B 1.1 E 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 T.E.1.1 T.E.2.1 T.E.3.1 T.E.1.2 T.E.2.2 T.E.3.2 E T Z A B T.E.1.3 T.E.2.3 T.E.3.3 T.E.1.4 T.E.2.4 T.E.3.4

66 GetBulkRequest-PDU Operation
GetRequest ( A,B ) GetNextRequest (T.E.1,T.E.2,T.E.3) GetResponse (T.E.1.1,T.E.2.1,T.E.3.1) GetNextRequest (T.E.1.1,T.E.2.1,T.E.3.1) GetResponse (T.E.1.2,T.E.2.2,T.E.3.2) GetResponse (T.E.1.3,T.E.2.3,T.E.3.3) GetNextRequest (T.E.1.3,T.E.2.3,T.E.3.3) GetResponse (T.E.1.4,T.E.2.4,T.E.3.4) GetResponse (T.E.2.1,T.E.3.1,Z) Manager Process Agent GetResponse (A,B) GetNextRequest (T.E.1.4,T.E.2.4,T.E.3.4) GetNextRequest (T.E.1.2,T.E.2.2,T.E.3.2)

67 GetBulkRequest-PDU Operation
T.E.1.1 T.E.2.1 T.E.3.1 T.E.1.2 T.E.2.2 T.E.3.2 E T Z A B T.E.1.3 T.E.2.3 T.E.3.3 T.E.1.4 T.E.2.4 T.E.3.4 2 non repetitive objects (A, B) 3 repetitive instances Of the columnar object T.E.1, T.E.2, T.E.3 Manager Agent Process Process GetBulkRequest ( 2,3, A,B,T.E.1, T.E.2, T.E.3 ) Response ( A, B, T.E.1.1, T.E.2.1, T.E.3.1 T.E.1.2, T.E.2.2, T.E.3.2 T.E.1.3, T.E.2.3, T.E.3.3 ) 3 more rows GetBulkRequest ( 0,3, T.E.1.3, T.E.2.3, T.E.3.3 ) Response ( T.E.1.4, T.E.2.4, T.E.3.4, Z , " endOfMibView" ) Z is next in the lexicographic order

68 GetBulkRequest-PDU Operation

69 SNMPv2 Trap PDU Addition of NOTIFICATION-TYPE macro
Error Error VarBind1 VarBind1 VarBind2 VarBind 2 RequestID ... Type Status Index sysUpTime value snmpTrapOID value Addition of NOTIFICATION-TYPE macro Positions 1 and 2 in VarBindList are sysUpTime and snmpTrapOID Inform-Request behaves as trap in that the message goes from one manager to another unsolicited The receiving manager sends response to the sending manager

70 SNMPv2- Decentralized management
Agent Element manager MIB SNMPv2 agent MIB SNMPv2 Manager/agent Management server MIB Management Applications SNMPv2 manager MIB SNMPv2 agent MIB SNMPv2 Manager/agent MIB SNMPv2 agent SNMPv2 Configuration

71 Compatibility with SNMPv1
SNMPv2 MIB is not backward compatible with SNMPv1 Compatibility with SNMPv1  2 evolution paths: Bilingual Manager Proxy Server Bilingual Manager expensive in resource and operation SNMPv1 Agents Bilingual Manager Interpreter SNMPv2 Agent Profile SNMP Bilingual Manager Both interpreters are required!

72 SNMP Proxy Server SNMPv1 Agents SNMPv2 Manager Proxy Server SNMPv2
Pass-Through SNMPv2 Manager SNMPv1 Agent GetNextRequest GetRequest SetRequest Set: 1. non-repeaters = 0 2. max-repetitions = 0 GetBulkRequest Exception: For 'tooBig' error, contents of variable-bindings field removed . Response Prepend VarBind: 1. sysUpTime.0 2. snmpTrapOID.0 SNMPv2-Trap GetResponse Trap SNMP v2-v1 Proxy Server


Download ppt "SNMPv1 (cont’d) & SNMPv2 (II)*"

Similar presentations


Ads by Google