Download presentation
Presentation is loading. Please wait.
1
Description of t-band in 182Os with HFB+GCM
Yukio Hashimoto Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki , Japan Takatoshi Horibata Department of Software and Information Technology, Aomori University, Aomori, Aomori , Japan 1
2
Contents 1. Introduction 2. Three-dimensional Cranking
3. Tilted states and GCM 4. Concluding remarks 2
3
1. Introduction: general rotation mode
3
4
x x z y y (high K t-band) x x z z y y ω ω wobbling motion
tilted axis rotation (high K t-band) x x ω ω z z y y 4
5
wobbling band Odegard et al. Phys.Rev.Lett.86(2001), 5866 ω 5
6
P.M.Walker et al., Phys. Lett. B309(1993), 17-22.
g-band t-band ω 6 P.M.Walker et al., Phys. Lett. B309(1993),
7
182Os t-band (even component ) g-band 7 P.M.Walker et al., Phys. Lett. B309(1993),
8
theoretical frameworks
TAC *S. Frauendorf, Nucl. Phys. A557, 259c(1993) *S. Frauendorf, Nucl. Phys. A677, 115(2000). *S. Frauendorf, Rev. Mod. Phys. 73, 463(2001). HFB+RPA *M. Matsuzaki, Nucl. Phys. A509, 269(1990). *Y. R. Shimizu and M. Matsuzaki, Nucl. Phys. A588, 559(1996). *M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi, Phys. Rev. C65, (R)(2002). Phys. Rev. C69, (2004) HFB+GCM *A. K. Kerman and N. Onishi, Nucl. Phys. A361, 179(1981). *N. Onishi, Nucl. Phys. A456, 279(1986). *T. Horibata and N. Onishi, Nucl. Phys. A596, 251(1996). *T. Horibata, M. Oi, N. Onishi and A. Ansari, Nucl. Phys. A646, 277(1999); A651, 435(1999). *Y. Hashimoto and T. Horibata, Phys. Rev. C74, (2006) *Y. Hashimoto and T. Horibata, EPJ A42, 571(2009). 8
9
2. Three-dimensional cranked HFB
A.K.Kerman and N.Onishi, Nucl.Phys.A361(1981),179 9
10
Constraints for HFB calculation
ψ x x z y y 10
11
Starting points of tilted wave functions
ω 11
12
Energy vs tilt angle 18 J = 18 ψ x ψ z TAR y y 12
13
j // ω ω 13
14
TAR states and K=8 band TAR K ~ const. tilt angle (degree) 14
30 * sin(15°) = 7.8 28 * sin(16°) = 7.7 26 * sin(17°) = 7.6 TAR 24 * sin(18°) = 7.6 22 * sin(20°) = 7.5 18 * sin(24°) = 7.3 tilt angle (degree) 14
15
TAR states ( K=8 band) angular momentum J 15
16
t-band 3. Tilted states and GCM odd even g-band 16
P.M.Walker et al., Phys. Lett. B309, 17-22(1993). 16
17
s-branches 28 26 24 ψ 22 ψ 17
18
Energy splitting in tunneling effect
ーΨ V D D, V smaller ΔE larger 18
19
V odd t-band even g-band 19
P.M.Walker et al., Phys. Lett. B309(1993), 19
20
∫ Energy splitting in GCM wave function
generator coordinate a : tilt angle ψ ∫ wave function HFB solution at a Cf. T.Horibata et al., Nucl.Phys.A646(1999), 277. M.Oi et al., Phys. Lett. B418(1998), 1. Phys. Lett. B525(2002), 255. 20
21
GCM amplitudes (J = 24,26,28) (ΔE= 93 keV) ΔE=252 keV ΔE=130 keV 21
22
4. Concluding Remarks 1. We have microscopically calculated three-dimensional rotation. 2. The TAR states are expected to be the members of a band with K = 8 (t-band). experimental results by Walker’s group. 3. GCM calculations (refinement) are in progress. 22
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.