Download presentation
Presentation is loading. Please wait.
1
Nanocrystalline Materials
Bulk Nanocrystalline Materials Francisca Caballero Carlos Garcia Mateo Mohamed Sherif
2
Problem: to design a bulk nanocrystalline steel which is very strong, tough, cheap ….
3
Brenner, 1956
4
Scifer, 5.5 GPa and ductile Kobe Steel
6
50-10 Denier Scifer is 9 Denier
1 Denier: weight in grams, of 9 km of fibre 50-10 Denier Scifer is 9 Denier
7
Morinobu Endo, 2004
8
Claimed strength of carbon nanotube is 130 GPa
Edwards, Acta Astronautica, 2000 Claimed modulus is 1.2 TPa Terrones et al., Phil. Trans. Roy. Soc., 2004
9
Equilibrium number of defects (1020)
Strength of a nanotube rope 2 mm long is less than 2000 MPa
11
Summary Strength produced by deformation limits shape: wires, sheets... Strength in small particles relies on perfection. Doomed as size increases.
12
Smallest size possible in polycrystalline substance?
14
Yokota & Bhadeshia, 2004
15
Courtesy of Tsuji, Ito, Saito, Minamino, Scripta Mater. 47 (2002) 893.
Howe, Materials Science and Technology 16 (2000) 1264.
16
Interstitial-free steel
Courtesy of Tsuji, Ito, Saito, Minamino, Scripta Mater. 47 (2002) 893.
19
Introduce work-hardening capacity Need to store the heat Reduce rate
Nanocrystalline steel by transformation Introduce work-hardening capacity Need to store the heat Reduce rate Transform at low temperature
21
Cementite suppressed using silicon
22
Fe-2Si-3Mn-C wt% 800 B 600 Temperature / K 400 M 200 0.2 0.4 0.6 0.8 1
0.2 0.4 0.6 0.8 1 1.2 1.4 Carbon / wt%
23
Fe-2Si-3Mn-C wt% 1.E+08 1 month Time / s 1.E+04 1.E+00 0.5 1 1.5
1 year 1 month Time / s 1.E+04 1.E+00 0.5 1 1.5 Carbon / wt%
24
wt% Low transformation temperature Bainitic hardenability
Reasonable transformation time Elimination of cementite Austenite grain size control Avoidance of temper embrittlement wt%
25
Homogenisation Austenitisation Isothermal transformation Temperature
1200 o C 2 days 1000 o C 15 min Temperature Air 125 o C - 325 o C slow cooling hours - months cooling Quench Time
26
Temperature/ oC Time / s 700 600 500 400 300 200 100 1.E+00 1.E+02
B ~ 350 o C Temperature/ oC S 300 200 M = 120 o C S 100 1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 Time / s
27
retained austenite bainitic ferrite Percentage of phase Temperature/ C
100 retained austenite 80 X-ray diffraction results 60 Percentage of phase 40 bainitic ferrite 20 200 250 300 325 Temperature/ o C
29
g g a a a Caballero, Mateo, Bhadeshia 200 Å
30
Low temperature transformation: 0.25 T/Tm
Fine microstructure: nm thick plates Harder than most martensites (710 HV) Carbide-free Designed using theory alone
31
Caballero, Mateo, Bhadeshia
32
Caballero, Mateo, Bhadeshia
36
Sherif, 2005, Ph.D. thesis, Cambridge
37
Sherif, 2005, Ph.D. thesis, Cambridge
38
Sherif, 2005, Ph.D. thesis, Cambridge
39
Below percolation threshold
Above percolation threshold
40
Geometrical percolation threshold of overlapping ellipsoids
42
Faster Transformation
Cobalt (1.5 wt%) and aluminium (1 wt%) increase the stability of ferrite relative to austenite Refine austenite grain size
43
200oC 250oC 300oC
44
Stress / GPa Velocity km s-1 Hammond and Cross, 2004
45
“more serious battlefield threats”
46
ballistic mass efficiency
consider unit area of armour
47
g g a a a Very strong Huge uniform ductility No deformation
No rapid cooling No residual stresses a Cheap Uniform in very large sections a 200 Å
48
Fe-2Si-3Mn-C wt% 1.E+08 1 month Time / s 1.E+04 1.E+00 0.5 1 1.5
1 year 1 month Time / s 1.E+04 1.E+00 0.5 1 1.5 Carbon / wt%
49
Fe-1.75C-Si-Mn wt% Chatterjee & Bhadeshia, 2004
50
Thank you
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.