Presentation is loading. Please wait.

Presentation is loading. Please wait.

Y. Mongbanziama, S. Aeby, S. Roth and P. Brodard

Similar presentations


Presentation on theme: "Y. Mongbanziama, S. Aeby, S. Roth and P. Brodard"— Presentation transcript:

1 Kinetic parameters of the thermal degradation of polymers by chemiluminescence
Y. Mongbanziama, S. Aeby, S. Roth and P. Brodard SCS Photochemistry Section Annual Meeting | ETH Zurich |

2 World plastics production
in the world and in Europe PlasticsEurope (PEMRG) / Consultic

3 European plastics production
Europe ranks 2nd PlasticsEurope (PEMRG) / Consultic

4 Applications of plastics
1st packaging, 2nd building & construction PlasticsEurope (PEMRG) / Consultic

5 Aging of polymers Two main classes of factors influencing the degradation: physical factors: heat, light… chemical factors: oxygen, chemicals... These factors often induce an oxidation: thermal-oxidation chemical-oxidation photo-oxidation F. Käser, Theory of Chemiluminescence, ACL Instrument AG

6 Thermal-oxidation Russell mechanism (autocatalytic) ketone excited
alcohol oxygen ketone excited triplet state F. Käser, Theory of Chemiluminescence, ACL Instrument AG

7  formation of excited triplet ketone or singlet oxygen
Chemiluminescence peroxyl radical intermediate:  formation of excited triplet ketone or singlet oxygen singlet O2: IR band emission (1270 nm) triplet ketone: visible range ( nm)  CHEMILUMINESCENCE

8 Experimental setup F. Käser, Theory of Chemiluminescence, ACL Instrument AG

9 Isothermal measurements
step 1 of 3 to obtain the kinetic parameters: isothermal measurements Sorin ILIE, Radu SENETSCU, Polymeric Materials Review on Oxidation, Stabilization and Evaluation using CL and DSC Methods, TE-VSC (Cern)

10 Numeric fitting step 2 of 3 to obtain the kinetic parameters: numeric fitting of the CL curve oxidation mechanism: J. Rychlý, L. Matisová-Rychlá, D. Jurcák, Chemiluminescence from oxidized polypropylene during temperature cycling. Polymer Degradation and Stability 2000, 68,

11 Arrhenius step 3 of 3 to obtain the kinetic parameters: Arrhenius plots linearization

12 Aging of polyethylene PE
application: water pipes measured samples: pellets ( mg) number of measurements: 5x isothermal (150 to 200°C) atmospheres: pure O2 and air

13 Activation energy of oxidation of PE
results Oxidative environment T [°C] toxidation [h] A [Hz] Y k1 [s-1] k2 [s-1] Oxygen 200 5.2 1.42·106 7.94·107 1.10·10-3 8.95·10-5 190 12 2.36·105 8.52·109 6.09·10-4 2.84·10-5 180 26 2.34·106 9.48·1014 4.12·10-4 4.26·10-5 170 56 1.86·108 3.02·1018 2.28·10-4 3.82·10-5 150 276 1.14·1024 1.14·1026 6.21·10-5 4.52·10-5 Air 22 1.70·105 2.21·1019 1.90·10-5 50 7.81·107 9.72·1021 2.95·10-4 4.16·10-5 102 4.98·108 6.55·1024 1.64·10-4 2.73·10-5 226 8.89·1012 1.95·1029 8.59·10-5 2.48·10-5 Oxidative environment Ea [kJ/mol] A [s-1] Oxygen 94.4 2.92·107 Air 113.3 1.91·109

14 Estimation of the lifetime of PE
time of maximum oxidation vs. temperature:  exponential decay! extrapolation air curve: 70°C  toxidation = 56.4 years

15 Conclusion Kinetic parameters can be determined by chemiluminescence measurements Isothermal measurements Numeric fitting Arrhenius plots Non-isothermal prediction of the lifetime is possible Funding: project PolyAge

16 Thanks! Yvan Mongbanziama Samuel Roth Sandrine Aeby Pierre Brodard


Download ppt "Y. Mongbanziama, S. Aeby, S. Roth and P. Brodard"

Similar presentations


Ads by Google