Presentation is loading. Please wait.

Presentation is loading. Please wait.

Similar presentations


Presentation on theme: ""β€” Presentation transcript:

1 π‘₯=4, 𝑦=5 π‘₯=21, π‘Ÿ=29 π‘Ÿ= 10 , π‘₯=1 𝑦=4 2 , π‘₯=4 Warm Up r y 𝒓= πŸ’πŸ x π’š=𝟐𝟎
A right triangle has side lengths x, y, and r. Find the unknown length. r y π‘₯=4, 𝑦=5 π‘₯=21, π‘Ÿ=29 π‘Ÿ= 10 , π‘₯=1 𝑦=4 2 , π‘₯=4 The square has side lengths 14. The two curves are each of a circle with radius 14. Find the area of the shaded region. 𝒓= πŸ’πŸ x π’š=𝟐𝟎 π’š=πŸ‘ 𝒓=πŸ’ πŸ‘ πŸ—πŸ–π…βˆ’πŸπŸ—πŸ”

2 Quiz 7.1 & 7.2 Degree & Radian Conversions Coterminal Angles
Arc Length of a Sector Area of a Sector Apparent Size

3 Section 7-3 The Sine and Cosine Functions
Objective: To use the definitions of sine and cosine to find values of these functions and to solve simple trigonometric equations.

4 π‘ π‘–π‘›πœƒ= π‘œπ‘π‘ β„Žπ‘¦π‘ = 𝑦 π‘Ÿ r  π‘Žπ‘‘π‘— β„Žπ‘¦π‘ = π‘₯ π‘Ÿ cos πœƒ=

5 Example 1 If the terminal ray of an angle ΞΈ in standard position passes through (-3, 2), find sin ΞΈ and cos ΞΈ. Solution: On a grid, locate (-3,2). Use this point to draw a right triangle, where one side is on the x-axis, and the hypotenuse is line segment between (-3,2) and (0,0). Start of Day 2

6 π‘Ÿ= βˆ’3 2 + 2 2 𝒙=βˆ’πŸ‘ 𝒓= πŸπŸ‘ 𝐲=𝟐 = 2 13 13 = 2 13 π‘ π‘–π‘›πœƒ= 𝑦 π‘Ÿ = βˆ’3 13 13
= = π‘ π‘–π‘›πœƒ= 𝑦 π‘Ÿ = βˆ’ = βˆ’3 13 π‘π‘œπ‘ πœƒ= π‘₯ π‘Ÿ π‘Ÿ= βˆ’ 𝒙=βˆ’πŸ‘ 𝒓= πŸπŸ‘ 𝐲=𝟐

7 Example 2 If the π‘ π‘–π‘›πœƒ=βˆ’ 5 13 , what quadrant is the angle in?

8 = 12 13 π‘π‘œπ‘ πœƒ= π‘₯ π‘Ÿ 𝐲=βˆ’πŸ“ 𝒓=πŸπŸ‘ π‘₯= βˆ’ βˆ’5 2 𝒙=𝟏𝟐 𝒙=±𝟏𝟐 4th Quadrant, so

9 π‘ π‘–π‘›πœƒ= cos πœƒ= 𝑦 π‘Ÿ π‘₯ π‘Ÿ π‘œπ‘π‘ β„Žπ‘¦π‘ = π‘Žπ‘‘π‘— β„Žπ‘¦π‘ =
r  π‘Žπ‘‘π‘— β„Žπ‘¦π‘ = π‘₯ π‘Ÿ cos πœƒ= When the radius =1 on the unit circle, π‘ π‘–π‘›πœƒ= 𝑦 1 =𝑦 π‘π‘œπ‘ πœƒ= π‘₯ 1 =π‘₯

10 Unit Circle The circle x2 + y2 = 1 has radius 1 and is therefore called the unit circle. This circle is the easiest one with which to work because sin ΞΈ and cos ΞΈ are simply the y- and x-coordinates of the point where the terminal ray of ΞΈ intersects the circle. When the radius =1 on the unit circle, π‘ π‘–π‘›πœƒ= 𝑦 1 =𝑦 π‘π‘œπ‘ πœƒ= π‘₯ 1 =π‘₯

11 1 1 2 1 2

12 II I III IV (βˆ’,+) (+,+) (βˆ’,βˆ’) (+,βˆ’) On Your Unit Circle:
Label the quadrants. Note the positive or negative x and y values in each quadrant. (cos, sin) (cos, sin) (βˆ’,+) (+,+) II I III IV (βˆ’,βˆ’) (+,βˆ’) (cos, sin) (cos, sin)

13 You can determine the exact value of sine and cosine for many angles on the unit circle.
1 -1 βˆ’ 2 2 Find: sin 90Β° sin 450Β° cos (-Ο€) sin (βˆ’ 2πœ‹ 3 ) cos -315Β° Refer to graph file β€œUC Quadrantal Angles”

14 Example 3 Degrees: πœƒ=90˚±360𝑛 Radians: πœƒ= πœ‹ 2 Β±2π‘›πœ‹
Solve sin ΞΈ = 1 for ΞΈ in degrees and radians. Degrees: πœƒ=90˚±360𝑛 Radians: πœƒ= πœ‹ 2 Β±2π‘›πœ‹

15 Repeating Sin and Cos Values
For any integer n, 𝑠𝑖𝑛 (πœƒ Β± 360°𝑛) = π‘ π‘–π‘›β‘πœƒ π‘π‘œπ‘  (πœƒ Β± 360°𝑛) =π‘π‘œπ‘ β‘πœƒ 𝑠𝑖𝑛 (πœƒ Β±2πœ‹π‘›) = π‘ π‘–π‘›β‘πœƒ π‘π‘œπ‘  (πœƒ Β±2πœ‹π‘›) =π‘π‘œπ‘ β‘πœƒ The sine and cosine functions are periodic. They have a fundamental period of 360˚ or 2 radians.

16 Homework Page 272 #1-27 odd, #33-41 odd


Download ppt ""

Similar presentations


Ads by Google