Presentation is loading. Please wait.

Presentation is loading. Please wait.

Equilibrium Carrier Statistics

Similar presentations


Presentation on theme: "Equilibrium Carrier Statistics"β€” Presentation transcript:

1 Equilibrium Carrier Statistics
Chapter 4 Equilibrium Carrier Statistics

2 DENSITY OF STATES The density of state function per unit volume, g(E)dE, gives the number of available quantum states in the energy interval between E and E + dE. What do we need to know? i) E – k relationship (dispersion relation) 𝐸= ℏ 2 π‘˜ 2 2 π‘š 𝑒 βˆ— = ℏ π‘˜ π‘₯ 2 π‘š π‘₯π‘₯ + π‘˜ 𝑦 2 π‘š 𝑦𝑦 + π‘˜ 𝑧 2 π‘š 𝑧𝑧 If π‘š π‘₯π‘₯ = π‘š 𝑦𝑦 = π‘š 𝑧𝑧 : isotropic effective mass If not : anisotropic effective mass ii) Proceed with constant energy surface. isotropic effective mass β†’ spherical constant energy surface anisotropic effective mass β†’ ellipsoidal constant energy surface

3 General Derivation = 𝑆 𝑑 𝑆 𝑑 π‘˜ 𝑛
E + dE E constant energy surface 𝑑 π‘˜ = 𝑑 π‘˜ 𝑛 + 𝑑 π‘˜ 𝑙 𝑑 𝑆 : differential surface area for constant energy surface Total volume in k-space between E and E + dE, π‘₯ 𝑦 𝑧 π‘˜ π‘₯ π‘˜ 𝑦 π‘˜ 𝑧 2πœ‹/π‘Ž 2πœ‹/𝑏 2πœ‹/𝑐 𝑉=(π‘Žπ‘π‘) = 𝑆 𝑑 𝑆 𝑑 π‘˜ 𝑛 constant energy surface Unit volume occupied by each value of π‘˜ = 2πœ‹ 3 𝑉 : minimum volume in π‘˜ -space Number of states/each unit volume = 1 = 2, including spin

4 Total number of states between E and (E + dE)lunit volume
spin 𝑔 𝐸 𝑑𝐸= 2 𝑆 𝑑 𝑆 𝑑 π‘˜ 𝑛 (2πœ‹) 3 /𝑉 /𝑉= 2 (2πœ‹) 3 𝑆 𝑑 𝑆 𝑑 π‘˜ 𝑛 The differential energy, 𝑑𝐸= 𝛻 π‘˜ πΈβˆ™π‘‘ π‘˜ = 𝛻 π‘˜ 𝐸 𝑑 π‘˜ 𝑛 𝑔 𝐸 𝑑𝐸= 2 (2πœ‹) 3 𝑆 𝑑 𝑆 𝛻 π‘˜ 𝐸 𝑑𝐸 𝑔 𝐸 = 2 (2πœ‹) 3 𝑆 𝑑 𝑆 𝛻 π‘˜ 𝐸 Then, general expression for density of states 𝑆 𝑑 𝑆 𝛻 π‘˜ 𝐸 = 𝑆 𝑑 𝑆 𝑑 π‘˜ 𝑛 𝑑𝐸 = (𝑑 π‘˜ ) 𝑑𝐸 or equivalently, volume element 𝑔 𝐸 = 2 (2πœ‹) (𝑑 π‘˜ ) 𝑑𝐸 𝑔 𝐸 𝑑𝐸 =2 (𝑑 π‘˜ ) (2πœ‹) 3 Then, 𝑔 𝐸 𝑑𝐸 = 𝑠𝑝𝑖𝑛 π‘šπ‘–π‘›π‘–π‘šπ‘Ž π‘π‘Žπ‘›π‘‘ (𝑑 π‘˜ ) (2πœ‹) 𝑁 volume element dimension = 1 for 1-D 2 for 2-D 3 for 3-D = 2 = 1 for Ξ“ 3 for X 4 for L heavy hole light hole split-off

5 Density of States for Free Particle in 3 - D
𝐸= ℏ 2 π‘˜ 2 2π‘š = ℏ 2 2π‘š π‘˜ π‘₯ 2 + π‘˜ 𝑦 2 + π‘˜ 𝑧 2 𝑔 𝐸 = 2 (2πœ‹) 3 𝑆 𝑑 𝑆 𝛻 π‘˜ 𝐸 spherical constant energy surface parabolic E-k relationship 𝑆 𝑑 𝑆 =4πœ‹ π‘˜ 2 𝛻 π‘˜ 𝐸 = π‘Ž π‘₯ ℏ 2 π‘š π‘˜ π‘₯ + π‘Ž 𝑦 ℏ 2 π‘š π‘˜ 𝑦 + π‘Ž 𝑧 ℏ 2 π‘š π‘˜ 𝑧 = ℏ 2 π‘š π‘˜ 𝑔 𝐸 = 2 (2πœ‹) 3 𝑆 𝑑 𝑆 𝛻 π‘˜ 𝐸 = 2 (2πœ‹) 3 βˆ™ ℏ 2 π‘š π‘˜βˆ™4πœ‹ π‘˜ 2 = π‘šπ‘˜ πœ‹ 2 ℏ 2 = π‘š 3/2 πœ‹ 2 ℏ 3 𝐸 1/2 𝑔 𝐸 𝑑𝐸 =2 (𝑑 π‘˜ ) (2πœ‹) 3 π‘‘π‘˜= π‘š ℏ ℏ 2 2π‘šπΈ 𝑑𝐸 𝐸= ℏ 2 π‘˜ 2 2π‘š 𝑑 π‘˜ =4πœ‹ π‘˜ 2 π‘‘π‘˜, from 𝑔 𝐸 𝑑𝐸 = π‘š 3/2 πœ‹ 2 ℏ 3 𝐸 1/2 𝑑𝐸 𝑔 𝐸 = π‘š 3/2 πœ‹ 2 ℏ 3 𝐸 1/2 Density of States for Free Particle in 2 - D and 1 - D i) 2-D Neglecting energy minima and band, the volume element (𝑑 π‘˜ ) becomes area element.

6 𝑔 𝐸 𝑑𝐸 =2 2π‘‘π‘˜ (2πœ‹) 1 = 2π‘š πœ‹β„ 𝐸 𝑑𝐸 𝑔1𝐷 𝐸 = 2π‘š πœ‹β„ 𝐸
𝑔 𝐸 𝑑𝐸 =2 (𝑑 π‘˜ ) (2πœ‹) 𝑁 ky area element (𝑑 π‘˜ )=2πœ‹π‘˜π‘‘π‘˜ dimension = 2 for 2-D π‘˜ 𝑔 𝐸 𝑑𝐸 =2 2πœ‹π‘˜π‘‘π‘˜ (2πœ‹) 2 = πœ‹ ℏ 2π‘šπΈ π‘š ℏ π‘šπΈ ℏ 2 𝑑𝐸 = π‘š πœ‹ ℏ 2 𝑑𝐸 kx π‘‘π‘˜= π‘š ℏ ℏ 2 2π‘šπΈ 𝑑𝐸, 𝐸= ℏ 2 π‘˜ 2 2π‘š 𝑔2𝐷 𝐸 = π‘š πœ‹ ℏ 2 : constant ii) 1-D The volume element (𝑑 π‘˜ ) becomes line element and N = 1. (𝑑 π‘˜ )=2π‘‘π‘˜ 𝑔 𝐸 𝑑𝐸 =2 2π‘‘π‘˜ (2πœ‹) 1 = π‘š πœ‹β„ 𝐸 𝑑𝐸 𝑑 π‘˜ kx π‘˜ g(E) 𝑔1𝐷 𝐸 = 2π‘š πœ‹β„ 𝐸 𝑔1𝐷 𝑔3𝐷 𝑔2𝐷 E

7 Specific Materials Conduction Band – GaAs
isotropic effective mass and parabolic E-k relationship near 𝛀 band minimum (k = 0) πΈβˆ’ 𝐸 𝐢 β‰… ℏ 2 π‘˜ 2 2 π‘š 𝑒 βˆ— = ℏ 2 2 π‘š 𝑛 βˆ— π‘˜ π‘₯ 2 + π‘˜ 𝑦 2 + π‘˜ 𝑧 2 : spherical constant energy surface same as free particle except that π‘šβ†’ π‘š 𝑛 βˆ— 𝐸→(πΈβˆ’ 𝐸 𝐢 ) 𝑔 𝐢 𝐸 = 𝑁 𝑆 π‘š 𝑛 βˆ— πœ‹ 2 ℏ 3 (𝐸 βˆ’ 𝐸 𝐢 ) 1/2 for 𝐸> 𝐸 𝐢 where 𝑁 𝑆 (number of equivalent minima) = 1 for 𝛀 band Conduction Band – Si, Ge ( 1 2 Γ—8) equivalent band minima 6 equivalent band minima almost parabolic E-k relationship near L or X band minimum, but anisotropic effective mass πΈβˆ’ 𝐸 𝐢 β‰… ℏ 2 2 π‘š 𝑙 βˆ— π‘˜ π‘₯ 2 + ℏ 2 2 π‘š 𝑑 βˆ— π‘˜ 𝑦 2 + π‘˜ 𝑧 2 : ellipsoidal constant energy surface Let π‘˜ π‘₯ 2 π‘š 𝑙 βˆ— = π‘˜ π‘₯ β€² 2 , π‘˜ 𝑦 2 π‘š 𝑑 βˆ— = π‘˜ 𝑦 β€² 2 , π‘˜ 𝑧 2 π‘š 𝑑 βˆ— = π‘˜ 𝑧 β€² 2 then, 𝑑 π‘˜ π‘₯ = π‘š 𝑙 βˆ— 𝑑 π‘˜ π‘₯ β€² , 𝑑 π‘˜ 𝑦 = π‘š 𝑑 βˆ— 𝑑 π‘˜ 𝑦 β€² ,𝑑 π‘˜ 𝑧 = π‘š 𝑑 βˆ— 𝑑 π‘˜ 𝑧 β€²

8 πΈβˆ’ 𝐸 𝐢 = ℏ 2 2 π‘˜ β€² 2 = ℏ 2 2 π‘˜ π‘₯ β€² 2 + π‘˜ 𝑦 β€² 2 + π‘˜ 𝑧 β€² 2
πΈβˆ’ 𝐸 𝐢 = ℏ π‘˜ β€² 2 = ℏ π‘˜ π‘₯ β€² 2 + π‘˜ 𝑦 β€² 2 + π‘˜ 𝑧 β€² 2 : spherical constant energy surface in k’-space where (𝑑 π‘˜ ) = 𝑑 π‘˜ π‘₯ 𝑑 π‘˜ 𝑦 𝑑𝑧= π‘š 𝑙 βˆ— π‘š 𝑑 βˆ— /2 𝑑 π‘˜ π‘₯ β€² 𝑑 π‘˜ 𝑦 β€² 𝑑 π‘˜ 𝑧 β€² = π‘š 𝑙 βˆ— π‘š 𝑑 βˆ— /2 (𝑑 π‘˜ β€² ) 𝑔 𝐢 𝐸 𝑑𝐸 =2 (𝑑 π‘˜ ) (2πœ‹) 3 , (𝑑 π‘˜ β€² )= 4πœ‹ π‘˜ β€² 2 𝑑 π‘˜ β€² =4πœ‹ 2(𝐸 βˆ’ 𝐸 𝐢 ) ℏ ℏ 2(𝐸 βˆ’ 𝐸 𝐢 ) 𝑑𝐸 and 𝑔 𝐢 𝐸 𝑑𝐸 = π‘š 𝑙 βˆ— π‘š 𝑑 βˆ— πœ‹ 3 𝑑 π‘˜ β€² = 2 π‘š 𝑙 βˆ— π‘š 𝑑 βˆ— /2 4πœ‹ 2(𝐸 βˆ’ 𝐸 𝐢 ) ℏ ℏ 2(𝐸 βˆ’ 𝐸 𝐢 ) 𝑑𝐸 Then, = 𝑁 𝑒𝑙 πœ‹ 2 ℏ π‘š 𝑙 βˆ— π‘š 𝑑 βˆ— πΈβˆ’ 𝐸 𝐢 𝑑𝐸 equivalent band minima 2 πœ‹ 2 ℏ π‘š 𝑛 βˆ— πΈβˆ’ 𝐸 𝐢 𝑑𝐸 Nel = 6 for Si (not at X-band edge) Nel = Γ—8=4 for Ge (L-band edge) 6 2/3 π‘š 𝑙 βˆ— π‘š 𝑑 βˆ— for Si π‘š 𝑛 βˆ— = 𝑁 𝑒𝑙 π‘š 𝑙 βˆ— π‘š 𝑑 βˆ— ∴ π‘š 𝑛 βˆ— = 4 2/3 π‘š 𝑙 βˆ— π‘š 𝑑 βˆ— for Ge

9 Valence Band – Si, Ge, GaAs
degenerated hh and lh band at k = 0 k heavy hole light hole split-off Neglecting split-off band, 𝑔 𝑉 𝐸 = 𝑔 β„Žβ„Ž 𝐸 + 𝑔 π‘™β„Ž 𝐸 = π‘š β„Žβ„Ž βˆ— πœ‹ 2 ℏ 3 ( 𝐸 𝑉 βˆ’πΈ) 1/ π‘š π‘™β„Ž βˆ— πœ‹ 2 ℏ 3 ( 𝐸 𝑉 βˆ’πΈ) 1/2 = π‘š 𝑝 βˆ— πœ‹ 2 ℏ 3 ( 𝐸 𝑉 βˆ’πΈ) 1/2 π‘š 𝑝 βˆ— = π‘š β„Žβ„Ž βˆ— π‘š π‘™β„Ž βˆ— π‘š 𝑝 βˆ— = π‘š β„Žβ„Ž βˆ— π‘š β„Žβ„Ž βˆ— ∴

10 𝑔1𝐷 𝐸 2 = 2π‘š πœ‹β„ 𝐸 Density of States of Low-Dimensional Semiconductors
𝑔2𝐷 𝐸 3 = π‘š βˆ— πœ‹ ℏ 2 i) 2-D semiconductor (quantum well) Each subband has constant density states. 𝑔2𝐷 𝐸 = π‘š βˆ— πœ‹ ℏ 2 E4 E4 E3 E3 E2 E2 E1 E1 ii) 1-D semiconductor (quantum wire) 𝑔1𝐷 𝐸 2 = 2π‘š πœ‹β„ 𝐸 E1 E2 E3

11 FERMI FUNCTION Maxwell-Boltzmann : classical Bose-Einstein
Fermi-Dirac : classical Energy distribution functions: quantum mechanical compose of the product of two terms: 1) the number of energy states with the energy interval 2) the probability that a particle occupies the states Fermi-Dirac distribution function is applied for the particle system which obeys the Pauli Exclusion Principle. No two electrons can have identical quantum states. Bose-Einstein distribution function is applied for the particle system which does not obey the Pauli Exclusion Principle.

12 Fermi-Dirac Statistics
Derivation Proper Each allowed state can accommodate one and only one electron. Two macroscopic constraints: 𝑖 𝑁 𝑖 = 𝑁 : total number of particles constants 𝑖 𝑁 𝑖 𝐸 𝑖 = 𝐸 𝑇 : total energy of particle system What is the most probable distribution subject to these constraints? How many ways can we arrange Ni particles among the Si states in a given interval?

13 π‘Š 𝑖 = 𝑆 𝑖 ! 𝑆 𝑖 βˆ’ 𝑁 𝑖 ! 𝑁 𝑖 ! π‘Š= 𝑖 π‘Š 𝑖 = 𝑖 𝑆 𝑖 ! 𝑆 𝑖 βˆ’ 𝑁 𝑖 ! 𝑁 𝑖 !
Like putting Ni objects into Si boxes, but the boxes will hold only 1 particle. Level electrons we can put first in Si boxes, second into Si -1 boxes………last into Si – Ni + 1. Total number of different ways of putting labeled electrons into the boxes:. 𝑁 𝑖 𝑆 𝑖 βˆ’ 𝑁 𝑖 +1 = 𝑆 𝑖 𝑆 𝑖 βˆ’1 𝑆 𝑖 βˆ’2 ….. 𝑆 𝑖 βˆ’ 𝑁 𝑖 +1 = 𝑆 𝑖 ! 𝑆 𝑖 βˆ’ 𝑁 𝑖 ! However, electrons are indistinguishable and there are Ni! ways of labeling the electron. ∴ The number of physically different ways of putting Ni electrons among Si states in the Ei energy level is π‘Š 𝑖 = 𝑆 𝑖 ! 𝑆 𝑖 βˆ’ 𝑁 𝑖 ! 𝑁 𝑖 ! for any Ei level The total number of different ways in which N electrons can be arranged in the multilevel system (i.e., number of ways putting N1 electrons into S1 states, N2 electrons into S2 states………Ni electrons onto Si states), π‘Š= 𝑖 π‘Š 𝑖 = 𝑖 𝑆 𝑖 ! 𝑆 𝑖 βˆ’ 𝑁 𝑖 ! 𝑁 𝑖 !

14 Under thermal equilibrium, the most probable distribution or arranged of electrons is the one that is most disordered. That is, the distribution of electrons which can occur in the largest number of ways is the most probable one. ∴ The most probable distribution occurs for maximum W subject to the constant constraints of 𝑖 𝑁 𝑖 = 𝑁, 𝑖 𝑁 𝑖 𝐸 𝑖 = 𝐸 𝑇 To easily maximize, treat with π‘™π‘›π‘Š π‘™π‘›π‘Š=𝑙𝑛⁑( 𝑖 π‘Š 𝑖 )= 𝑖 π‘™π‘›π‘Š 𝑖 = 𝑖 𝑙𝑛𝑆 𝑖 !βˆ’ ln⁑(𝑆 𝑖 βˆ’ 𝑁 𝑖 !) βˆ’ 𝑙𝑛𝑁 𝑖 ! Maximize W with respect to Ni methods of β€œ Largrangian undetermined multipliers” 𝛼 βˆ’ 𝑖 𝑁 𝑖 + 𝑁 = 0, 𝛽 βˆ’ 𝑖 𝐸 𝑖 𝑁 𝑖 + 𝐸 𝑇 = 0 πœ• πœ• 𝑁 𝑖 π‘™π‘›π‘Š+𝛼 βˆ’ 𝑖 𝑁 𝑖 + 𝑁 +𝛽 βˆ’ 𝑖 𝐸 𝑖 𝑁 𝑖 + 𝐸 𝑇 = 0

15 πœ• πœ• 𝑁 𝑖 π‘™π‘›π‘Š βˆ’π›Όβˆ’π›½ 𝐸 𝑖 = 0 Using Stirling’s approximation, 𝑙𝑛π‘₯!β‰…π‘₯ 𝑙𝑛π‘₯ - π‘₯ π‘™π‘›π‘Š= 𝑖 𝑆 𝑖 𝑙𝑛𝑆 𝑖 βˆ’ 𝑆 𝑖 βˆ’ (𝑆 𝑖 βˆ’ 𝑁 𝑖 ) ln⁑(𝑆 𝑖 βˆ’ 𝑁 𝑖 )+( 𝑆 𝑖 βˆ’ 𝑁 𝑖 ) βˆ’π‘ 𝑖 𝑙𝑛 𝑁 𝑖 + 𝑁 𝑖 = 𝑖 𝑆 𝑖 𝑙𝑛 𝑆 𝑖 𝑆 𝑖 βˆ’ 𝑁 𝑖 βˆ’ 𝑁 𝑖 𝑙𝑛 𝑁 𝑖 𝑆 𝑖 βˆ’ 𝑁 𝑖 …..(π‘Ž) πœ• πœ• 𝑁 𝑖 π‘™π‘›π‘Š = πœ• πœ• 𝑁 𝑖 𝑆 𝑖 𝑙𝑛 𝑆 𝑖 𝑆 𝑖 βˆ’ 𝑁 𝑖 βˆ’ 𝑁 𝑖 𝑙𝑛 𝑁 𝑖 𝑆 𝑖 βˆ’ 𝑁 𝑖 =𝑙𝑛 𝑆 𝑖 βˆ’ 𝑁 𝑖 𝑁 𝑖 𝑆 𝑖 βˆ’ 𝑁 𝑖 𝑁 𝑖 = 𝑒 𝛼+𝛽 𝐸 𝑖 βˆ΄π‘™π‘› 𝑆 𝑖 βˆ’ 𝑁 𝑖 𝑁 𝑖 =𝛼+𝛽 𝐸 𝑖 𝑓 𝐸 𝑖 = 𝑁 𝑖 𝑆 𝑖 = 𝑒 𝛼+𝛽 𝐸 𝑖 called β€œFermi-Dirac distribution function” If we define a Fermi energy, 𝐸 𝐹 ≑ βˆ’π›Ό 𝛽 𝑓 𝐸 𝑖 = 𝑒 𝛽( 𝐸 𝑖 βˆ’ 𝐸 𝐹 ) …..(𝑏) 𝛽 can be evaluated by thermodynamics.

16 We can define the Helmholtz function,
𝐹 ≑ 𝐸 𝑇 βˆ’π‘‡π‘† …..(𝑐) where 𝐸 𝑇 = internal energy of a system 𝑇 = temperature S = entropy P = pressure V = volume and the Gibbs function as 𝐺 ≑ 𝐸 𝑇 βˆ’π‘‡π‘† +𝑃𝑉 …..(𝑑) F and G are minimum at thermal equilibrium. 𝑓 𝐸 𝑖 = 𝑒 𝛽( 𝐸 𝑖 βˆ’ 𝐸 𝐹 ) …..(𝑏) Boltzmann definition of entropy at thermal equilibrium: 𝑆 = π‘˜π‘™π‘›π‘Š …..(𝑒) : most probable arrangement of particles in a crystal. Substituting (b) into (a), π‘™π‘›π‘Š = 𝑖 𝑆 𝑖 𝑙𝑛 𝑆 𝑖 𝑆 𝑖 βˆ’ 𝑁 𝑖 βˆ’ 𝑁 𝑖 𝑙𝑛 𝑁 𝑖 𝑆 𝑖 βˆ’ 𝑁 𝑖 = 𝑖 𝑆 𝑖 𝑙𝑛 1+ 𝑒 𝛽( 𝐸 𝐹 βˆ’ 𝐸 𝑖 ) + 𝑁 𝑖 βˆ’1 𝛽( 𝐸 𝑖 βˆ’ 𝐸 𝐹 ) =𝛽 𝑖 𝑁 𝑖 𝐸 𝑖 βˆ’ 𝑖 𝑁 𝑖 𝐸 𝐹 + 𝑖 𝑆 𝑖 𝑙𝑛 1+ 𝑒 𝛽( 𝐸 𝐹 βˆ’ 𝐸 𝑖 ) =𝛽 𝐸 𝑇 βˆ’ 𝐸 𝐹 𝑁 + 𝑖 𝑆 𝑖 𝑙𝑛 1+ 𝑒 𝛽( 𝐸 𝐹 βˆ’ 𝐸 𝑖 ) β‰ˆ 𝑁 𝑖 πœ• πœ• 𝐸 𝑇 π‘™π‘›π‘Š =𝛽

17 𝑓 𝐸 = 1 1+ 𝑒 πΈβˆ’ 𝐸 𝐹 /π‘˜π‘‡ πœ• πœ• 𝐸 𝑇 π‘™π‘›π‘Š = 1 π‘˜ πœ•π‘† πœ• 𝐸 𝑇 = 1 π‘˜π‘‡ 𝑆 = π‘˜π‘™π‘›π‘Š
πœ• πœ• 𝐸 𝑇 π‘™π‘›π‘Š = 1 π‘˜ πœ•π‘† πœ• 𝐸 𝑇 = 1 π‘˜π‘‡ 𝑆 = π‘˜π‘™π‘›π‘Š πœ•πΉ πœ• 𝐸 𝑇 ≑1βˆ’π‘‡ πœ•π‘† πœ• 𝐸 𝑇 =0 𝐹 ≑ 𝐸 𝑇 βˆ’π‘‡π‘† βˆ΄π›½= 1 π‘˜π‘‡ Ξ±=βˆ’ 𝐸 𝐹 π‘˜π‘‡ and 𝑓 𝐸 𝑖 = 1 1+ 𝑒 𝐸 𝑖 βˆ’ 𝐸 𝐹 /π‘˜π‘‡ Replacing Ei with continuous variable E in energy band, 𝑓 𝐸 = 1 1+ 𝑒 πΈβˆ’ 𝐸 𝐹 /π‘˜π‘‡ πΈβˆ’ 𝐸 𝐹 (eV)

18 SUPPLEMENTAL INFORMATION
Equilibrium Distribution of Carriers 𝑛 𝐸 =𝑔 𝐢 𝐸 𝑓(𝐸) 𝑔 𝐢 𝐸 = 𝑁 𝑆 π‘š 𝑛 βˆ— πœ‹ 2 ℏ 3 (𝐸 βˆ’ 𝐸 𝐢 ) 1/2 𝑔 𝑉 𝐸 = π‘š 𝑝 βˆ— πœ‹ 2 ℏ 3 ( 𝐸 𝑉 βˆ’πΈ) 1/2 𝑝 𝐸 =𝑔 𝑉 𝐸 [1βˆ’π‘“ 𝐸 ] 𝑓 𝐸 = 1 1+ 𝑒 πΈβˆ’ 𝐸 𝐹 /π‘˜π‘‡

19 The Energy Band Diagram
β„° (π‘₯,𝑦,𝑧)=βˆ’π›»π‘‰(π‘₯,𝑦,𝑧) β„° π‘₯ =βˆ’ 𝑑𝑉(π‘₯) 𝑑π‘₯ β„° π‘₯ = 1 π‘ž 𝑑 𝐸 𝐢 (π‘₯) 𝑑π‘₯ = 1 π‘ž 𝑑 𝐸 𝑉 (π‘₯) 𝑑π‘₯ 𝑑ℰ π‘₯ 𝑑π‘₯ = 𝜌(π‘₯) πœ– 𝑃.𝐸. π‘₯ = 𝐸 𝐢 (x) βˆ’ 𝐸 π‘Ÿπ‘’π‘“ 𝑃.𝐸. π‘₯ =βˆ’π‘žπ‘‰(π‘₯) 𝑉 π‘₯ =βˆ’ 1 π‘ž 𝐸 𝐢 π‘₯ βˆ’ 𝐸 π‘Ÿπ‘’π‘“

20 Donors, Acceptors, Band Gap Centers
Intrinsic material, n = p = ni Extrinsic material

21

22 Ionization(Binding) Energy of Donor and Acceptor
Energy required for electron in solid to make a transition from the donor level to the conduction band and become (quasi) free. r3 e, m0 r2 n=1 n=2 n=3 e, m* r3 r2 r1 n=1 n=3 n=2 Si = 11.7 for Si hydrogen atom in vacuum donor atom in Si r1 n = ο‚₯ , Eο‚₯ = 0 n = 3, E3 n = 2, E2 n = 1, E1 hydrogen atom n = ο‚₯ , Edο‚₯= Ec n = 3, Ed3 n = 2, Ed2 n = 1, Ed1 donor atom Ec= Edο‚₯ ~6meV n=1, Ed1= Ed , n=1, 2, 3,

23 EQUILIBRIUM CONCENTRATION RELATIONSHIPS
Formulas for n and p Electron concentration in the conduction band β‰ˆ ∞ if 𝐸 π‘‘π‘œπ‘ - EF >> kT due to exponential dependence of f(E) 𝑛= 𝐸 𝐢 𝐸 π‘‘π‘œπ‘ 𝑛 𝐸 𝑑𝐸= 𝐸 𝐢 𝐸 π‘‘π‘œπ‘ 𝑔 𝐢 𝐸 𝑓 𝐸 𝑑𝐸 𝑔 𝐢 𝐸 = π‘š 𝑛 βˆ— πœ‹ 2 ℏ 3 (𝐸 βˆ’ 𝐸 𝐢 ) 1/2 Hole concentration in the valence band 𝑔 𝑉 𝐸 = π‘š 𝑝 βˆ— πœ‹ 2 ℏ 3 ( 𝐸 𝑉 βˆ’πΈ) 1/2 𝑝= 𝐸 π‘π‘œπ‘‘π‘‘π‘œπ‘š 𝐸 𝑉 𝑝 𝐸 𝑑𝐸= 𝐸 π‘π‘œπ‘‘π‘‘π‘œπ‘š 𝐸 𝑉 𝑔 𝑉 𝐸 [1βˆ’π‘“ 𝐸 ]𝑑𝐸 𝑓 𝐸 = 1 1+ 𝑒 πΈβˆ’ 𝐸 𝐹 /π‘˜π‘‡ β‰ˆβˆ’ ∞ 𝑛= 𝐸 𝐢 ∞ 𝑔 𝐢 𝐸 𝑓 𝐸 𝑑𝐸= π‘š 𝑛 βˆ— πœ‹ 2 ℏ 3 𝐸 𝐢 ∞ (𝐸 βˆ’ 𝐸 𝐢 ) 1/2 1+ 𝑒 πΈβˆ’ 𝐸 𝐹 /π‘˜π‘‡ 𝑑𝐸 using change of variable, ΞΎ = πΈβˆ’ 𝐸 𝐢 π‘˜π‘‡ , Ξ· = 𝐸 𝐹 βˆ’ 𝐸 𝐢 π‘˜π‘‡ 𝑑ξ = 1 π‘˜π‘‡ 𝑑𝐸, (𝐸 βˆ’ 𝐸 𝐢 ) 1/2 = ΞΎ 1/2 (π‘˜π‘‡) 1/2 ,𝐸 βˆ’ 𝐸 𝐹 =ΞΎ - Ξ· 𝑛= π‘š 𝑛 βˆ— (π‘˜π‘‡) πœ‹ 2 ℏ ∞ ΞΎ 1/2 1+ 𝑒 ΞΎ βˆ’ Ξ· 𝑑ξ = 𝑁 𝐢 β„± 1/2 Ξ· 𝐢 then = πœ‹ 𝑁 𝐢 𝐹 1/2 Ξ· 𝐢 Similarly, for holes in valence band 𝑝= 𝑁 𝑉 β„± 1/2 Ξ· 𝑉 = πœ‹ 𝑁 𝑉 𝐹 1/2 Ξ· 𝑉

24 where β„± 1/2 Ξ· = πœ‹ 𝐹 1/2 Ξ· 𝐹 1/2 Ξ· ≑ 0 ∞ ΞΎ 1/2 𝑑ξ 1+ 𝑒 ΞΎ βˆ’Ξ· : Fermi-Dirac integral of order 1/2 𝑁 𝐢 =2 π‘š 𝑛 βˆ— π‘˜π‘‡ 2Ο€ ℏ /2 : effective density of states at conduction band edge 𝑁 𝑉 =2 π‘š 𝑝 βˆ— π‘˜π‘‡ 2Ο€ ℏ /2 : effective density of states at valence band edge

25 For nondegenerated semiconductors,
If 𝐸 𝐹 ≀ 𝐸 𝐢 βˆ’3π‘˜π‘‡ ( Ξ· 𝐢 ≀ βˆ’ 3), 1+ 𝑒 ΞΎ βˆ’ Ξ· βˆ’1 β‰ˆ 𝑒 βˆ’(ΞΎ βˆ’ Ξ·) 𝑛= 𝑁 𝐢 β„± 1/2 Ξ· 𝐢 β‰ˆ 𝑁 𝐢 2 πœ‹ 0 ∞ ΞΎ 𝑒 βˆ’ πœ‰ βˆ’ πœ‚ 𝑑ξ β‰ˆ 𝑁 𝐢 2 πœ‹ 𝑒 Ξ· 𝐢 0 ∞ ΞΎ 1/2 𝑒 βˆ’ΞΎ 𝑑ξ then =𝑁 𝐢 𝑒 Ξ· 𝐢 =𝑁 𝐢 𝑒 βˆ’( 𝐸 𝐢 βˆ’ 𝐸 𝐹 ) 0 ∞ 𝑦 1/2 𝑒 βˆ’π‘Žπ‘¦ 𝑑𝑦 = πœ‹ 2π‘Ž π‘Ž 𝛀- function likewise If 𝐸 𝐹 β‰₯ 𝐸 𝑉 +3π‘˜π‘‡, 𝑝 =𝑁 𝑉 𝑒 βˆ’( 𝐸 𝐹 βˆ’ 𝐸 𝑉 ) 𝑛𝑝 =𝑁 𝐢 𝑁 𝑉 𝑒 βˆ’ 𝐸 𝐺 π‘˜π‘‡ = 𝑛 𝑖 2 Mass-action law 𝑛 𝑖 = 𝑁 𝐢 𝑁 𝑉 𝑒 βˆ’πΈ 𝐺 2π‘˜π‘‡

26 Physical Meaning of β€œEffective Density of States”
𝑔 𝐢 (𝐸)= 𝑁 𝐢 Ξ΄(𝐸 βˆ’ 𝐸 𝐢 ) 𝑛= 0 ∞ 𝑔 𝐢 𝐸 𝑓 𝐸 𝑑𝐸 =𝑁 𝐢 𝑒 βˆ’( 𝐸 𝐢 βˆ’ 𝐸 𝐹 ) = 𝑁 𝐢 𝑓 𝐸 𝑛= 0 ∞ 𝑔 𝐢 𝐸 𝑓 𝐸 𝑑𝐸 = 0 ∞ 𝑁 𝐢 Ξ΄(𝐸 βˆ’ 𝐸 𝐢 ) 𝑓 𝐸 𝑑𝐸 = 𝑁 𝐢 𝑓 𝐸 for nondegenerate Charge Neutrality Relationship From Poisson’s equation π›»βˆ™ β„° = 𝜌 𝐾 𝑆 πœ€ 0 , 𝜌= π‘ž(𝑝 βˆ’π‘›+ 𝑁 𝐷 + βˆ’ 𝑁 𝐴 βˆ’ ) For uniformly doped semiconductor at equilibrium, β„° = 0 and charge neutrality requires that 𝑝 βˆ’π‘›+ 𝑁 𝐷 + βˆ’ 𝑁 𝐴 βˆ’ =0 𝑝 βˆ’π‘›+ 𝑁 𝐷 βˆ’ 𝑁 𝐴 =0 dopant sites totally ionized

27 Relationships for ND+ and NA-
Donor and Acceptor Statistics : Κ“(πœ‡, 𝑇)= π‘Žπ‘™π‘™ π‘ π‘‘π‘Žπ‘‘π‘’π‘  π‘Žπ‘™π‘™ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝑒 π‘πœ‡βˆ’πΈ /π‘˜π‘‡ Gibbs grand sum chemical potential = 𝐺𝑖𝑏𝑏𝑠(π‘ π‘‘π‘Žπ‘‘π‘’π‘ ) Κ“(πœ‡, 𝑇) Probability in a state Fermi-Dirac distribution Occupancy Energy N E Κ“(πœ‡, 𝑇)= 𝑒 π‘πœ‡βˆ’πΈ /π‘˜π‘‡ =1+ 𝑒 πœ‡βˆ’πΈ /π‘˜π‘‡ f(𝐸)= 𝐺𝑖𝑏𝑏𝑠(π‘ π‘‘π‘Žπ‘‘π‘’π‘ ) Κ“(πœ‡, 𝑇) = 1βˆ™ 𝑒 πœ‡βˆ’πΈ /π‘˜π‘‡ 1+ 𝑒 πœ‡βˆ’πΈ /π‘˜π‘‡ = 1 1+ 𝑒 πΈβˆ’ 𝐸 𝐹 /π‘˜π‘‡ Probability of occupancy, replacing πœ‡ with EF.

28 Electrons in a band with spin
Occupancy Energy N ↑ E ↓ E ↑↓ E 2 Κ“(πœ‡, 𝑇)= 𝑒 π‘πœ‡βˆ’πΈ /π‘˜π‘‡ =1+ 𝑒 πœ‡βˆ’πΈ /π‘˜π‘‡ + 𝑒 πœ‡βˆ’πΈ π‘˜π‘‡ + 𝑒 2 πœ‡βˆ’πΈ /π‘˜π‘‡ Probability of occupancy = 𝐺𝑖𝑏𝑏𝑠(π‘ π‘‘π‘Žπ‘‘π‘’π‘ ) Κ“(πœ‡, 𝑇) = 1βˆ™ 𝑒 πœ‡βˆ’πΈ /π‘˜π‘‡ +1βˆ™ 𝑒 πœ‡βˆ’πΈ π‘˜π‘‡ +2βˆ™ 𝑒 πœ‡βˆ’πΈ /π‘˜π‘‡ Κ“(πœ‡, 𝑇) = 2 𝑒 πœ‡βˆ’πΈ /π‘˜π‘‡ (1+ 𝑒 πœ‡βˆ’πΈ /π‘˜π‘‡ ) 𝑒 πœ‡βˆ’πΈ /π‘˜π‘‡ 2 =2Γ— 1 1+ 𝑒 πΈβˆ’ 𝐸 𝐹 /π‘˜π‘‡ replacing πœ‡ with EF. Donors Occupancy Energy N ↑ ED 1 ↓ ED 1 Κ“(πœ‡, 𝑇)= 𝑒 π‘πœ‡βˆ’πΈ /π‘˜π‘‡ =1+ 𝑒 πœ‡βˆ’πΈπ· /π‘˜π‘‡ + 𝑒 πœ‡βˆ’πΈπ· π‘˜π‘‡ =1+2 𝑒 πœ‡βˆ’πΈπ· /π‘˜π‘‡ Probability of occupancy = probability that the donor atoms are unionized (neutral donors) 𝑁 𝐷 0 𝑁 𝐷 = 1βˆ™ 𝑒 πœ‡βˆ’πΈπ· /π‘˜π‘‡ +1βˆ™ 𝑒 πœ‡βˆ’πΈπ· /π‘˜π‘‡ 1+2 𝑒 πœ‡βˆ’πΈπ· /π‘˜π‘‡ = 𝑒 πΈπ·βˆ’ 𝐸 𝐹 /π‘˜π‘‡ where 𝑁 𝐷 = 𝑁 𝐷 0 + 𝑁 𝐷 + replacing πœ‡ with EF.

29 Probability of being unoccupied = probability that the donor atoms are ionized
𝑁 𝐷 + 𝑁 𝐷 = 𝑒 𝐸 𝐹 βˆ’πΈπ· /π‘˜π‘‡ = 1 1+ 𝑔 𝐷 𝑒 πΈπΉβˆ’ 𝐸 𝐷 /π‘˜π‘‡ where 𝑔 𝐷 = degeneracy factor for donors 2 Acceptors Occupancy Energy N 0 ↑ 0 ↓ EA Κ“(πœ‡, 𝑇)= 𝑒 π‘πœ‡βˆ’πΈ /π‘˜π‘‡ = 𝑒 πœ‡βˆ’πΈπ΄ /π‘˜π‘‡ =4+ 𝑒 πœ‡βˆ’πΈπ΄ /π‘˜π‘‡ hh lh Probability of occupancy = probability of being ionized acceptors where 𝑁 𝐴 = 𝑁 𝐴 0 + 𝑁 𝐴 βˆ’ 𝑁 𝐴 βˆ’ 𝑁 𝐴 = 1βˆ™ 𝑒 πœ‡βˆ’πΈπ΄ /π‘˜π‘‡ 4+ 𝑒 πœ‡βˆ’πΈπ΄ /π‘˜π‘‡ = 𝑒 πΈπ΄βˆ’ 𝐸 𝐹 /π‘˜π‘‡ = 1 1+ 𝑔 𝐴 𝑒 πΈπ΄βˆ’ 𝐸 𝐹 /π‘˜π‘‡ replacing πœ‡ with EF. 4 𝑔 𝐴 = degeneracy factor for acceptors Deep level trap centers 𝑁 𝐷 + β†’ 𝑁 𝑇 + , 𝑔 𝐷 β†’ 𝑔 𝑇 , 𝐸 𝐷 β†’ 𝐸 𝑇 for donor-like 𝑁 𝐴 βˆ’ β†’ 𝑁 𝑇 βˆ’ , 𝑔 𝐴 β†’ 𝑔 𝑇 , 𝐸 𝐴 β†’ 𝐸 𝑇 for acceptor-like 𝑁 𝑇 + 𝑁 𝑇 = 1 1+ 𝑔 𝑇 𝑒 𝐸 𝐹 βˆ’πΈπ‘‡ /π‘˜π‘‡ = 1 1+ 𝑒 πΈπΉβˆ’ 𝐸 𝑇 β€² /π‘˜π‘‡ where 𝐸 𝑇 β€² = 𝐸 𝑇 - kT ln 𝑔 𝑇

30 CONCENTRATION AND EF CALCULATION

31 Equilibrium Carrier Concentrations
From charge neutrality 𝑝 βˆ’π‘›+ 𝑁 𝐷 + βˆ’ 𝑁 𝐴 βˆ’ =0 and assuming nondegeneracy 𝑁 𝑉 𝑒 βˆ’( 𝐸 𝐹 βˆ’ 𝐸 𝑉 ) βˆ’π‘ 𝐢 𝑒 βˆ’( 𝐸 𝐢 βˆ’ 𝐸 𝐹 ) + 𝑁 𝐷 1+ 𝑔 𝐷 𝑒 πΈπΉβˆ’ 𝐸 𝐷 /π‘˜π‘‡ βˆ’ 1 1+ 𝑔 𝐴 𝑒 πΈπ΄βˆ’ 𝐸 𝐹 /π‘˜π‘‡ =0 Freeze-out/extrinsic T (ND >> NA or NA >> ND ) In a donor-doped semiconductor (ND >> NA), n >> p and 𝑁 𝐷 + >> 𝑁 𝐴 βˆ’ (except in the extreme Tβ†’0) βˆ΄π‘› β‰ˆ 𝑁 𝐷 + 𝑁 𝐷 + = 𝑁 𝐷 1+ 𝑔 𝐷 𝑒 πΈπΉβˆ’ 𝐸 𝐷 /π‘˜π‘‡ = 𝑁 𝐷 1+ 𝑔 𝐷 𝑛 𝑁 𝐢 𝑒 πΈπΆβˆ’ 𝐸 𝐷 /π‘˜π‘‡ = 𝑁 𝐷 1+ 𝑛 𝑁 ΞΎ 𝑛 2 + 𝑁 ΞΎ 𝑛 βˆ’ 𝑁 ΞΎ 𝑁 𝐷 =0 where 𝑁 ΞΎ ≑ 𝑁 𝐢 𝑔 𝐷 𝑒 βˆ’ πΈπΆβˆ’ 𝐸 𝐷 /π‘˜π‘‡ 𝑛=βˆ’ 𝑁 ΞΎ 𝑁 ΞΎ 𝑁 ΞΎ 𝑁 𝐷 1/2 𝑛= 𝑁 ΞΎ 𝑁𝐷 𝑁 ΞΎ 1/2 βˆ’1 β‰ˆ 𝑁 𝐷 or typically 𝑁 ΞΎ ≫𝑁𝐷 in the extrinsic temperature region almost fully ionized at room temperature

32 Extrinsic/Intrinsic T (relatively high T)
𝑁 𝐷 + β‰ˆ 𝑁 𝐷 , 𝑁 𝐴 βˆ’ β‰ˆ 𝑁 𝐴 Then, 𝑝 βˆ’π‘›+ 𝑁 𝐷 βˆ’ 𝑁 𝐴 =0 : charge neutrality 𝑛𝑝= 𝑛 𝑖 2 : nondegenerated semiconductor 𝑛 2 βˆ’ 𝑁 𝐷 βˆ’ 𝑁 𝐴 𝑛 βˆ’ 𝑛 𝑖 2 =0 βˆ΄π‘›= 𝑁 𝐷 βˆ’ 𝑁 𝐴 𝑁 𝐷 βˆ’ 𝑁 𝐴 𝑛 𝑖 2 1/2 𝑝= 𝑛 𝑖 2 𝑛 = 𝑁 𝐴 βˆ’ 𝑁 𝐷 𝑁 𝐴 βˆ’ 𝑁 𝐷 𝑛 𝑖 2 1/2 For donor-doped semiconductor, extrinsic T (ND >> NA, ND >> ni), π‘β‰ˆ 𝑛 𝑖 2 𝑁 𝐷 𝑛 β‰ˆ 𝑁 𝐷 , For acceptor-doped semiconductor, extrinsic T (NA >> ND, NA >> ni), π‘›β‰ˆ 𝑛 𝑖 2 𝑁 𝐴 𝑝 β‰ˆ 𝑁 𝐴 , For intrinsic T, 𝑛 𝑖 ≫ 𝑁 𝐷 βˆ’ 𝑁 𝐴 𝑛 β‰ˆ 𝑛 𝑖 , 𝑝 β‰ˆ 𝑛 𝑖 , For compensation, 𝑁 𝐷 βˆ’ 𝑁 𝐴 β‰ˆ0

33 Determination of EF Exact position of Ei
For intrinsic semiconductor, n = p, NA = ND = 0, EF = Ei 𝑁 𝐢 𝑒 βˆ’( 𝐸 𝐢 βˆ’ 𝐸 𝑖 ) =𝑁 𝑉 𝑒 βˆ’( 𝐸 𝑖 βˆ’ 𝐸 𝑉 ) ∴ 𝐸 𝑖 = 𝐸 𝐢 + 𝐸 𝑉 π‘˜π‘‡ 2 𝑙𝑛 𝑁 𝑉 𝑁 𝐢 = 𝐸 𝐢 + 𝐸 𝑉 π‘˜π‘‡π‘™π‘› π‘š 𝑝 βˆ— π‘š 𝑛 βˆ— Freeze-out/extrinsic T (ND >> NA or NA >> ND ) In a donor-doped semiconductor (ND >> NA, ND >> ni) 𝑛 β‰ˆ 𝑁 𝐷 + 𝑛= 𝑁 𝐢 𝑒 βˆ’( 𝐸 𝐢 βˆ’ 𝐸 𝐹 ) = 𝑁 ΞΎ 𝑁 𝐷 𝑁 ΞΎ 1/2 βˆ’1 𝐸 𝐹 = 𝐸 𝐢 +π‘˜π‘‡π‘™π‘› 𝑁 ΞΎ 2 𝑁 𝐢 𝑁 𝐷 𝑁 ΞΎ 1/2 βˆ’1 or equivalently (at low temperature extrinsic region) 𝑁 𝐢 𝑒 βˆ’( 𝐸 𝐢 βˆ’ 𝐸 𝐹 ) = 𝑁 𝐷 1+ 𝑔 𝐷 𝑒 πΈπΉβˆ’ 𝐸 𝐷 /π‘˜π‘‡ β‰ˆ 𝑁 𝐷 𝑔 𝐷 𝑒 πΈπΉβˆ’ 𝐸 𝐷 /π‘˜π‘‡ if EF – ED > 0 and as T goes small. 𝐸 𝐹 = 𝐸 𝐢 + 𝐸 𝐷 π‘˜π‘‡π‘™π‘› 𝑁 𝐷 𝑔 𝐷 𝑁 𝐢 𝐸 𝐢 βˆ’ 𝐸 𝐹 = 𝐸 𝐢 + 𝐸 𝐷 π‘˜π‘‡π‘™π‘› 𝑔 𝐷 𝑁 𝐢 𝑁 𝐷 or

34 Extrinsic/Intrinsic T (relatively high T)
π‘›β‰ˆ 𝑁 𝐷 , π‘β‰ˆ 𝑁 𝐴 𝑛 =𝑛 𝑖 𝑒 ( 𝐸 𝐹 βˆ’ 𝐸 𝑖 ) 𝑛 =𝑁 𝐢 𝑒 βˆ’( 𝐸 𝐢 βˆ’ 𝐸 𝐹 ) 𝑝=𝑛 𝑖 𝑒 ( 𝐸 𝑖 βˆ’ 𝐸 𝐹 ) 𝑝 =𝑁 𝑉 𝑒 βˆ’( 𝐸 𝐹 βˆ’ 𝐸 𝑉 ) For ND >> NA and ND >> ni 𝐸 𝐹 βˆ’ 𝐸 𝑖 =π‘˜π‘‡π‘™π‘› 𝑁 𝐷 𝑛 𝑖 or 𝐸 𝐢 βˆ’ 𝐸 𝐹 =π‘˜π‘‡π‘™π‘› 𝑁 𝐢 𝑁 𝐷 For NA >> ND and NA >> ni 𝐸 𝑖 βˆ’ 𝐸 𝐹 =π‘˜π‘‡π‘™π‘› 𝑁 𝐴 𝑛 𝑖 or 𝐸 𝐹 βˆ’ 𝐸 𝑉 =π‘˜π‘‡π‘™π‘› 𝑁 𝐢 𝑁 𝐴 What happens for partially compensated donor and acceptor with ND > NA? Read β€œdegenerate semiconductor consideration’


Download ppt "Equilibrium Carrier Statistics"

Similar presentations


Ads by Google