Download presentation
Presentation is loading. Please wait.
1
Equilibrium Carrier Statistics
Chapter 4 Equilibrium Carrier Statistics
2
DENSITY OF STATES The density of state function per unit volume, g(E)dE, gives the number of available quantum states in the energy interval between E and E + dE. What do we need to know? i) E β k relationship (dispersion relation) πΈ= β 2 π 2 2 π π β = β π π₯ 2 π π₯π₯ + π π¦ 2 π π¦π¦ + π π§ 2 π π§π§ If π π₯π₯ = π π¦π¦ = π π§π§ : isotropic effective mass If not : anisotropic effective mass ii) Proceed with constant energy surface. isotropic effective mass β spherical constant energy surface anisotropic effective mass β ellipsoidal constant energy surface
3
General Derivation = π π π π π π
E + dE E constant energy surface π π = π π π + π π π π π : differential surface area for constant energy surface Total volume in k-space between E and E + dE, π₯ π¦ π§ π π₯ π π¦ π π§ 2π/π 2π/π 2π/π π=(πππ) = π π π π π π constant energy surface Unit volume occupied by each value of π = 2π 3 π : minimum volume in π -space Number of states/each unit volume = 1 = 2, including spin
4
Total number of states between E and (E + dE)lunit volume
spin π πΈ ππΈ= 2 π π π π π π (2π) 3 /π /π= 2 (2π) 3 π π π π π π The differential energy, ππΈ= π» π πΈβπ π = π» π πΈ π π π π πΈ ππΈ= 2 (2π) 3 π π π π» π πΈ ππΈ π πΈ = 2 (2π) 3 π π π π» π πΈ Then, general expression for density of states π π π π» π πΈ = π π π π π π ππΈ = (π π ) ππΈ or equivalently, volume element π πΈ = 2 (2π) (π π ) ππΈ π πΈ ππΈ =2 (π π ) (2π) 3 Then, π πΈ ππΈ = π πππ ππππππ ππππ (π π ) (2π) π volume element dimension = 1 for 1-D 2 for 2-D 3 for 3-D = 2 = 1 for Ξ 3 for X 4 for L heavy hole light hole split-off
5
Density of States for Free Particle in 3 - D
πΈ= β 2 π 2 2π = β 2 2π π π₯ 2 + π π¦ 2 + π π§ 2 π πΈ = 2 (2π) 3 π π π π» π πΈ spherical constant energy surface parabolic E-k relationship π π π =4π π 2 π» π πΈ = π π₯ β 2 π π π₯ + π π¦ β 2 π π π¦ + π π§ β 2 π π π§ = β 2 π π π πΈ = 2 (2π) 3 π π π π» π πΈ = 2 (2π) 3 β β 2 π πβ4π π 2 = ππ π 2 β 2 = π 3/2 π 2 β 3 πΈ 1/2 π πΈ ππΈ =2 (π π ) (2π) 3 ππ= π β β 2 2ππΈ ππΈ πΈ= β 2 π 2 2π π π =4π π 2 ππ, from π πΈ ππΈ = π 3/2 π 2 β 3 πΈ 1/2 ππΈ π πΈ = π 3/2 π 2 β 3 πΈ 1/2 Density of States for Free Particle in 2 - D and 1 - D i) 2-D Neglecting energy minima and band, the volume element (π π ) becomes area element.
6
π πΈ ππΈ =2 2ππ (2π) 1 = 2π πβ πΈ ππΈ π1π· πΈ = 2π πβ πΈ
π πΈ ππΈ =2 (π π ) (2π) π ky area element (π π )=2ππππ dimension = 2 for 2-D π π πΈ ππΈ =2 2ππππ (2π) 2 = π β 2ππΈ π β ππΈ β 2 ππΈ = π π β 2 ππΈ kx ππ= π β β 2 2ππΈ ππΈ, πΈ= β 2 π 2 2π π2π· πΈ = π π β 2 : constant ii) 1-D The volume element (π π ) becomes line element and N = 1. (π π )=2ππ π πΈ ππΈ =2 2ππ (2π) 1 = π πβ πΈ ππΈ π π kx π g(E) π1π· πΈ = 2π πβ πΈ π1π· π3π· π2π· E
7
Specific Materials Conduction Band β GaAs
isotropic effective mass and parabolic E-k relationship near π€ band minimum (k = 0) πΈβ πΈ πΆ β
β 2 π 2 2 π π β = β 2 2 π π β π π₯ 2 + π π¦ 2 + π π§ 2 : spherical constant energy surface same as free particle except that πβ π π β πΈβ(πΈβ πΈ πΆ ) π πΆ πΈ = π π π π β π 2 β 3 (πΈ β πΈ πΆ ) 1/2 for πΈ> πΈ πΆ where π π (number of equivalent minima) = 1 for π€ band Conduction Band β Si, Ge ( 1 2 Γ8) equivalent band minima 6 equivalent band minima almost parabolic E-k relationship near L or X band minimum, but anisotropic effective mass πΈβ πΈ πΆ β
β 2 2 π π β π π₯ 2 + β 2 2 π π‘ β π π¦ 2 + π π§ 2 : ellipsoidal constant energy surface Let π π₯ 2 π π β = π π₯ β² 2 , π π¦ 2 π π‘ β = π π¦ β² 2 , π π§ 2 π π‘ β = π π§ β² 2 then, π π π₯ = π π β π π π₯ β² , π π π¦ = π π‘ β π π π¦ β² ,π π π§ = π π‘ β π π π§ β²
8
πΈβ πΈ πΆ = β 2 2 π β² 2 = β 2 2 π π₯ β² 2 + π π¦ β² 2 + π π§ β² 2
πΈβ πΈ πΆ = β π β² 2 = β π π₯ β² 2 + π π¦ β² 2 + π π§ β² 2 : spherical constant energy surface in kβ-space where (π π ) = π π π₯ π π π¦ ππ§= π π β π π‘ β /2 π π π₯ β² π π π¦ β² π π π§ β² = π π β π π‘ β /2 (π π β² ) π πΆ πΈ ππΈ =2 (π π ) (2π) 3 , (π π β² )= 4π π β² 2 π π β² =4π 2(πΈ β πΈ πΆ ) β β 2(πΈ β πΈ πΆ ) ππΈ and π πΆ πΈ ππΈ = π π β π π‘ β π 3 π π β² = 2 π π β π π‘ β /2 4π 2(πΈ β πΈ πΆ ) β β 2(πΈ β πΈ πΆ ) ππΈ Then, = π ππ π 2 β π π β π π‘ β πΈβ πΈ πΆ ππΈ equivalent band minima 2 π 2 β π π β πΈβ πΈ πΆ ππΈ Nel = 6 for Si (not at X-band edge) Nel = Γ8=4 for Ge (L-band edge) 6 2/3 π π β π π‘ β for Si π π β = π ππ π π β π π‘ β β΄ π π β = 4 2/3 π π β π π‘ β for Ge
9
Valence Band β Si, Ge, GaAs
degenerated hh and lh band at k = 0 k heavy hole light hole split-off Neglecting split-off band, π π πΈ = π ββ πΈ + π πβ πΈ = π ββ β π 2 β 3 ( πΈ π βπΈ) 1/ π πβ β π 2 β 3 ( πΈ π βπΈ) 1/2 = π π β π 2 β 3 ( πΈ π βπΈ) 1/2 π π β = π ββ β π πβ β π π β = π ββ β π ββ β β΄
10
π1π· πΈ 2 = 2π πβ πΈ Density of States of Low-Dimensional Semiconductors
π2π· πΈ 3 = π β π β 2 i) 2-D semiconductor (quantum well) Each subband has constant density states. π2π· πΈ = π β π β 2 E4 E4 E3 E3 E2 E2 E1 E1 ii) 1-D semiconductor (quantum wire) π1π· πΈ 2 = 2π πβ πΈ E1 E2 E3
11
FERMI FUNCTION Maxwell-Boltzmann : classical Bose-Einstein
Fermi-Dirac : classical Energy distribution functions: quantum mechanical compose of the product of two terms: 1) the number of energy states with the energy interval 2) the probability that a particle occupies the states Fermi-Dirac distribution function is applied for the particle system which obeys the Pauli Exclusion Principle. No two electrons can have identical quantum states. Bose-Einstein distribution function is applied for the particle system which does not obey the Pauli Exclusion Principle.
12
Fermi-Dirac Statistics
Derivation Proper Each allowed state can accommodate one and only one electron. Two macroscopic constraints: π π π = π : total number of particles constants π π π πΈ π = πΈ π : total energy of particle system What is the most probable distribution subject to these constraints? How many ways can we arrange Ni particles among the Si states in a given interval?
13
π π = π π ! π π β π π ! π π ! π= π π π = π π π ! π π β π π ! π π !
Like putting Ni objects into Si boxes, but the boxes will hold only 1 particle. Level electrons we can put first in Si boxes, second into Si -1 boxesβ¦β¦β¦last into Si β Ni + 1. Total number of different ways of putting labeled electrons into the boxes:. π π π π β π π +1 = π π π π β1 π π β2 β¦.. π π β π π +1 = π π ! π π β π π ! However, electrons are indistinguishable and there are Ni! ways of labeling the electron. β΄ The number of physically different ways of putting Ni electrons among Si states in the Ei energy level is π π = π π ! π π β π π ! π π ! for any Ei level The total number of different ways in which N electrons can be arranged in the multilevel system (i.e., number of ways putting N1 electrons into S1 states, N2 electrons into S2 statesβ¦β¦β¦Ni electrons onto Si states), π= π π π = π π π ! π π β π π ! π π !
14
Under thermal equilibrium, the most probable distribution or arranged of electrons is the one that is most disordered. That is, the distribution of electrons which can occur in the largest number of ways is the most probable one. β΄ The most probable distribution occurs for maximum W subject to the constant constraints of π π π = π, π π π πΈ π = πΈ π To easily maximize, treat with πππ πππ=ππβ‘( π π π )= π πππ π = π πππ π !β lnβ‘(π π β π π !) β πππ π ! Maximize W with respect to Ni methods of β Largrangian undetermined multipliersβ πΌ β π π π + π = 0, π½ β π πΈ π π π + πΈ π = 0 π π π π πππ+πΌ β π π π + π +π½ β π πΈ π π π + πΈ π = 0
15
π π π π πππ βπΌβπ½ πΈ π = 0 Using Stirlingβs approximation, πππ₯!β
π₯ πππ₯ - π₯ πππ= π π π πππ π β π π β (π π β π π ) lnβ‘(π π β π π )+( π π β π π ) βπ π ππ π π + π π = π π π ππ π π π π β π π β π π ππ π π π π β π π β¦..(π) π π π π πππ = π π π π π π ππ π π π π β π π β π π ππ π π π π β π π =ππ π π β π π π π π π β π π π π = π πΌ+π½ πΈ π β΄ππ π π β π π π π =πΌ+π½ πΈ π π πΈ π = π π π π = π πΌ+π½ πΈ π called βFermi-Dirac distribution functionβ If we define a Fermi energy, πΈ πΉ β‘ βπΌ π½ π πΈ π = π π½( πΈ π β πΈ πΉ ) β¦..(π) π½ can be evaluated by thermodynamics.
16
We can define the Helmholtz function,
πΉ β‘ πΈ π βππ β¦..(π) where πΈ π = internal energy of a system π = temperature S = entropy P = pressure V = volume and the Gibbs function as πΊ β‘ πΈ π βππ +ππ β¦..(π) F and G are minimum at thermal equilibrium. π πΈ π = π π½( πΈ π β πΈ πΉ ) β¦..(π) Boltzmann definition of entropy at thermal equilibrium: π = ππππ β¦..(π) : most probable arrangement of particles in a crystal. Substituting (b) into (a), πππ = π π π ππ π π π π β π π β π π ππ π π π π β π π = π π π ππ 1+ π π½( πΈ πΉ β πΈ π ) + π π β1 π½( πΈ π β πΈ πΉ ) =π½ π π π πΈ π β π π π πΈ πΉ + π π π ππ 1+ π π½( πΈ πΉ β πΈ π ) =π½ πΈ π β πΈ πΉ π + π π π ππ 1+ π π½( πΈ πΉ β πΈ π ) β π π π π πΈ π πππ =π½
17
π πΈ = 1 1+ π πΈβ πΈ πΉ /ππ π π πΈ π πππ = 1 π ππ π πΈ π = 1 ππ π = ππππ
π π πΈ π πππ = 1 π ππ π πΈ π = 1 ππ π = ππππ ππΉ π πΈ π β‘1βπ ππ π πΈ π =0 πΉ β‘ πΈ π βππ β΄π½= 1 ππ Ξ±=β πΈ πΉ ππ and π πΈ π = 1 1+ π πΈ π β πΈ πΉ /ππ Replacing Ei with continuous variable E in energy band, π πΈ = 1 1+ π πΈβ πΈ πΉ /ππ πΈβ πΈ πΉ (eV)
18
SUPPLEMENTAL INFORMATION
Equilibrium Distribution of Carriers π πΈ =π πΆ πΈ π(πΈ) π πΆ πΈ = π π π π β π 2 β 3 (πΈ β πΈ πΆ ) 1/2 π π πΈ = π π β π 2 β 3 ( πΈ π βπΈ) 1/2 π πΈ =π π πΈ [1βπ πΈ ] π πΈ = 1 1+ π πΈβ πΈ πΉ /ππ
19
The Energy Band Diagram
β° (π₯,π¦,π§)=βπ»π(π₯,π¦,π§) β° π₯ =β ππ(π₯) ππ₯ β° π₯ = 1 π π πΈ πΆ (π₯) ππ₯ = 1 π π πΈ π (π₯) ππ₯ πβ° π₯ ππ₯ = π(π₯) π π.πΈ. π₯ = πΈ πΆ (x) β πΈ πππ π.πΈ. π₯ =βππ(π₯) π π₯ =β 1 π πΈ πΆ π₯ β πΈ πππ
20
Donors, Acceptors, Band Gap Centers
Intrinsic material, n = p = ni Extrinsic material
22
Ionization(Binding) Energy of Donor and Acceptor
Energy required for electron in solid to make a transition from the donor level to the conduction band and become (quasi) free. r3 e, m0 r2 n=1 n=2 n=3 e, m* r3 r2 r1 n=1 n=3 n=2 Si = 11.7 for Si hydrogen atom in vacuum donor atom in Si r1 n = ο₯ , Eο₯ = 0 n = 3, E3 n = 2, E2 n = 1, E1 hydrogen atom n = ο₯ , Edο₯= Ec n = 3, Ed3 n = 2, Ed2 n = 1, Ed1 donor atom Ec= Edο₯ ~6meV n=1, Ed1= Ed , n=1, 2, 3,
23
EQUILIBRIUM CONCENTRATION RELATIONSHIPS
Formulas for n and p Electron concentration in the conduction band β β if πΈ π‘ππ - EF >> kT due to exponential dependence of f(E) π= πΈ πΆ πΈ π‘ππ π πΈ ππΈ= πΈ πΆ πΈ π‘ππ π πΆ πΈ π πΈ ππΈ π πΆ πΈ = π π β π 2 β 3 (πΈ β πΈ πΆ ) 1/2 Hole concentration in the valence band π π πΈ = π π β π 2 β 3 ( πΈ π βπΈ) 1/2 π= πΈ πππ‘π‘ππ πΈ π π πΈ ππΈ= πΈ πππ‘π‘ππ πΈ π π π πΈ [1βπ πΈ ]ππΈ π πΈ = 1 1+ π πΈβ πΈ πΉ /ππ ββ β π= πΈ πΆ β π πΆ πΈ π πΈ ππΈ= π π β π 2 β 3 πΈ πΆ β (πΈ β πΈ πΆ ) 1/2 1+ π πΈβ πΈ πΉ /ππ ππΈ using change of variable, ΞΎ = πΈβ πΈ πΆ ππ , Ξ· = πΈ πΉ β πΈ πΆ ππ πΞΎ = 1 ππ ππΈ, (πΈ β πΈ πΆ ) 1/2 = ΞΎ 1/2 (ππ) 1/2 ,πΈ β πΈ πΉ =ΞΎ - Ξ· π= π π β (ππ) π 2 β β ΞΎ 1/2 1+ π ΞΎ β Ξ· πΞΎ = π πΆ β± 1/2 Ξ· πΆ then = π π πΆ πΉ 1/2 Ξ· πΆ Similarly, for holes in valence band π= π π β± 1/2 Ξ· π = π π π πΉ 1/2 Ξ· π
24
where β± 1/2 Ξ· = π πΉ 1/2 Ξ· πΉ 1/2 Ξ· β‘ 0 β ΞΎ 1/2 πΞΎ 1+ π ΞΎ βΞ· : Fermi-Dirac integral of order 1/2 π πΆ =2 π π β ππ 2Ο β /2 : effective density of states at conduction band edge π π =2 π π β ππ 2Ο β /2 : effective density of states at valence band edge
25
For nondegenerated semiconductors,
If πΈ πΉ β€ πΈ πΆ β3ππ ( Ξ· πΆ β€ β 3), 1+ π ΞΎ β Ξ· β1 β π β(ΞΎ β Ξ·) π= π πΆ β± 1/2 Ξ· πΆ β π πΆ 2 π 0 β ΞΎ π β π β π πΞΎ β π πΆ 2 π π Ξ· πΆ 0 β ΞΎ 1/2 π βΞΎ πΞΎ then =π πΆ π Ξ· πΆ =π πΆ π β( πΈ πΆ β πΈ πΉ ) 0 β π¦ 1/2 π βππ¦ ππ¦ = π 2π π π€- function likewise If πΈ πΉ β₯ πΈ π +3ππ, π =π π π β( πΈ πΉ β πΈ π ) ππ =π πΆ π π π β πΈ πΊ ππ = π π 2 Mass-action law π π = π πΆ π π π βπΈ πΊ 2ππ
26
Physical Meaning of βEffective Density of Statesβ
π πΆ (πΈ)= π πΆ Ξ΄(πΈ β πΈ πΆ ) π= 0 β π πΆ πΈ π πΈ ππΈ =π πΆ π β( πΈ πΆ β πΈ πΉ ) = π πΆ π πΈ π= 0 β π πΆ πΈ π πΈ ππΈ = 0 β π πΆ Ξ΄(πΈ β πΈ πΆ ) π πΈ ππΈ = π πΆ π πΈ for nondegenerate Charge Neutrality Relationship From Poissonβs equation π»β β° = π πΎ π π 0 , π= π(π βπ+ π π· + β π π΄ β ) For uniformly doped semiconductor at equilibrium, β° = 0 and charge neutrality requires that π βπ+ π π· + β π π΄ β =0 π βπ+ π π· β π π΄ =0 dopant sites totally ionized
27
Relationships for ND+ and NA-
Donor and Acceptor Statistics : Κ(π, π)= πππ π π‘ππ‘ππ πππ ππππ‘πππππ π ππβπΈ /ππ Gibbs grand sum chemical potential = πΊππππ (π π‘ππ‘ππ ) Κ(π, π) Probability in a state Fermi-Dirac distribution Occupancy Energy N E Κ(π, π)= π ππβπΈ /ππ =1+ π πβπΈ /ππ f(πΈ)= πΊππππ (π π‘ππ‘ππ ) Κ(π, π) = 1β π πβπΈ /ππ 1+ π πβπΈ /ππ = 1 1+ π πΈβ πΈ πΉ /ππ Probability of occupancy, replacing π with EF.
28
Electrons in a band with spin
Occupancy Energy N β E β E ββ E 2 Κ(π, π)= π ππβπΈ /ππ =1+ π πβπΈ /ππ + π πβπΈ ππ + π 2 πβπΈ /ππ Probability of occupancy = πΊππππ (π π‘ππ‘ππ ) Κ(π, π) = 1β π πβπΈ /ππ +1β π πβπΈ ππ +2β π πβπΈ /ππ Κ(π, π) = 2 π πβπΈ /ππ (1+ π πβπΈ /ππ ) π πβπΈ /ππ 2 =2Γ 1 1+ π πΈβ πΈ πΉ /ππ replacing π with EF. Donors Occupancy Energy N β ED 1 β ED 1 Κ(π, π)= π ππβπΈ /ππ =1+ π πβπΈπ· /ππ + π πβπΈπ· ππ =1+2 π πβπΈπ· /ππ Probability of occupancy = probability that the donor atoms are unionized (neutral donors) π π· 0 π π· = 1β π πβπΈπ· /ππ +1β π πβπΈπ· /ππ 1+2 π πβπΈπ· /ππ = π πΈπ·β πΈ πΉ /ππ where π π· = π π· 0 + π π· + replacing π with EF.
29
Probability of being unoccupied = probability that the donor atoms are ionized
π π· + π π· = π πΈ πΉ βπΈπ· /ππ = 1 1+ π π· π πΈπΉβ πΈ π· /ππ where π π· = degeneracy factor for donors 2 Acceptors Occupancy Energy N 0 β 0 β EA Κ(π, π)= π ππβπΈ /ππ = π πβπΈπ΄ /ππ =4+ π πβπΈπ΄ /ππ hh lh Probability of occupancy = probability of being ionized acceptors where π π΄ = π π΄ 0 + π π΄ β π π΄ β π π΄ = 1β π πβπΈπ΄ /ππ 4+ π πβπΈπ΄ /ππ = π πΈπ΄β πΈ πΉ /ππ = 1 1+ π π΄ π πΈπ΄β πΈ πΉ /ππ replacing π with EF. 4 π π΄ = degeneracy factor for acceptors Deep level trap centers π π· + β π π + , π π· β π π , πΈ π· β πΈ π for donor-like π π΄ β β π π β , π π΄ β π π , πΈ π΄ β πΈ π for acceptor-like π π + π π = 1 1+ π π π πΈ πΉ βπΈπ /ππ = 1 1+ π πΈπΉβ πΈ π β² /ππ where πΈ π β² = πΈ π - kT ln π π
30
CONCENTRATION AND EF CALCULATION
31
Equilibrium Carrier Concentrations
From charge neutrality π βπ+ π π· + β π π΄ β =0 and assuming nondegeneracy π π π β( πΈ πΉ β πΈ π ) βπ πΆ π β( πΈ πΆ β πΈ πΉ ) + π π· 1+ π π· π πΈπΉβ πΈ π· /ππ β 1 1+ π π΄ π πΈπ΄β πΈ πΉ /ππ =0 Freeze-out/extrinsic T (ND >> NA or NA >> ND ) In a donor-doped semiconductor (ND >> NA), n >> p and π π· + >> π π΄ β (except in the extreme Tβ0) β΄π β π π· + π π· + = π π· 1+ π π· π πΈπΉβ πΈ π· /ππ = π π· 1+ π π· π π πΆ π πΈπΆβ πΈ π· /ππ = π π· 1+ π π ΞΎ π 2 + π ΞΎ π β π ΞΎ π π· =0 where π ΞΎ β‘ π πΆ π π· π β πΈπΆβ πΈ π· /ππ π=β π ΞΎ π ΞΎ π ΞΎ π π· 1/2 π= π ΞΎ ππ· π ΞΎ 1/2 β1 β π π· or typically π ΞΎ β«ππ· in the extrinsic temperature region almost fully ionized at room temperature
32
Extrinsic/Intrinsic T (relatively high T)
π π· + β π π· , π π΄ β β π π΄ Then, π βπ+ π π· β π π΄ =0 : charge neutrality ππ= π π 2 : nondegenerated semiconductor π 2 β π π· β π π΄ π β π π 2 =0 β΄π= π π· β π π΄ π π· β π π΄ π π 2 1/2 π= π π 2 π = π π΄ β π π· π π΄ β π π· π π 2 1/2 For donor-doped semiconductor, extrinsic T (ND >> NA, ND >> ni), πβ π π 2 π π· π β π π· , For acceptor-doped semiconductor, extrinsic T (NA >> ND, NA >> ni), πβ π π 2 π π΄ π β π π΄ , For intrinsic T, π π β« π π· β π π΄ π β π π , π β π π , For compensation, π π· β π π΄ β0
33
Determination of EF Exact position of Ei
For intrinsic semiconductor, n = p, NA = ND = 0, EF = Ei π πΆ π β( πΈ πΆ β πΈ π ) =π π π β( πΈ π β πΈ π ) β΄ πΈ π = πΈ πΆ + πΈ π ππ 2 ππ π π π πΆ = πΈ πΆ + πΈ π ππππ π π β π π β Freeze-out/extrinsic T (ND >> NA or NA >> ND ) In a donor-doped semiconductor (ND >> NA, ND >> ni) π β π π· + π= π πΆ π β( πΈ πΆ β πΈ πΉ ) = π ΞΎ π π· π ΞΎ 1/2 β1 πΈ πΉ = πΈ πΆ +ππππ π ΞΎ 2 π πΆ π π· π ΞΎ 1/2 β1 or equivalently (at low temperature extrinsic region) π πΆ π β( πΈ πΆ β πΈ πΉ ) = π π· 1+ π π· π πΈπΉβ πΈ π· /ππ β π π· π π· π πΈπΉβ πΈ π· /ππ if EF β ED > 0 and as T goes small. πΈ πΉ = πΈ πΆ + πΈ π· ππππ π π· π π· π πΆ πΈ πΆ β πΈ πΉ = πΈ πΆ + πΈ π· ππππ π π· π πΆ π π· or
34
Extrinsic/Intrinsic T (relatively high T)
πβ π π· , πβ π π΄ π =π π π ( πΈ πΉ β πΈ π ) π =π πΆ π β( πΈ πΆ β πΈ πΉ ) π=π π π ( πΈ π β πΈ πΉ ) π =π π π β( πΈ πΉ β πΈ π ) For ND >> NA and ND >> ni πΈ πΉ β πΈ π =ππππ π π· π π or πΈ πΆ β πΈ πΉ =ππππ π πΆ π π· For NA >> ND and NA >> ni πΈ π β πΈ πΉ =ππππ π π΄ π π or πΈ πΉ β πΈ π =ππππ π πΆ π π΄ What happens for partially compensated donor and acceptor with ND > NA? Read βdegenerate semiconductor considerationβ
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.