Download presentation
Presentation is loading. Please wait.
1
TCP
2
Transmission Control Protocol (TCP)
End-to-end transport protocol Responsible for reliability, congestion control, flow control, and sequenced delivery Applications that use TCP: http (web), telnet, ftp (file transfer), smtp ( ), chat Applications that don’t: multimedia (typically) – use UDP instead
3
Ports, End-points, & Connections
IP Layer TCP UDP http ftp smtptelnet A1 A2 A3 Transport Port IP address Protocol ID Thus, an end-point is represented by (IP address,Port) Ports can be re-used between transport protocols A connection is (SRC IP address, SRC port, DST IP address, DST port) Same end-point can be used in multiple connections
4
TCP Connection Establishment Connection Maintenance
Reliability Congestion control Flow control Sequencing Connection Termination
5
Active and Passive Open
How do applications initiate a connection? One end (server) registers with the TCP layer instructing it to “accept” connections at a certain port The other end (client) initiates a “connect” request which is “accept”-ed by the server
6
Connection Establishment & Termination
3-way handshake used for connection establishment Randomly chosen sequence number is conveyed to the other end Similar FIN, FIN+ACK exchange used for connection termination Server does passive open Accept connection request Send acceptance Start connection Active open Send connection request SYN SYN+ACK ACK DATA
7
Fundamental Mechanism
ack data data retx Simple stop and go protocol Timeout based reliability (loss recovery) Multiple unacknowledged packets (W) ack data Sliding Window Protocol: ….
8
Congestion Control Slow Start Start with W=1 For every ACK, W=W+1
Congestion Avoidance (linear increase) For every ACK, W = W+1/W Congestion Control (multiplicative decrease) ssthresh = W/2 W = 1 Alternative: Fall to W/2 and start congestion avoidance directly
9
Why LIMD? (fairness) W=1 W=W/2 100 10 diff = 90 1 1 diff = 0
Problem? – inefficient W=W/2 diff = 45 51 6 diff = 45 52 7 diff = 45 .. diff = 45 diff = 23.5 diff = 23.5 diff = 11.2
10
Reliability (Loss Recovery)
ack data Sequence Numbers TCP uses cumulative Acknowledgments (ACKs) Next expected in-sequence packet sequence number Pros and cons? Piggybacking Timeout calculation Rttavg = k*Rttavg + (1-k)*Rttsample RTO = Rttavg + 4*Rttdeviation 5 1 2 3 4 3 1 2 4
11
Flow Control Prevent sender from overwhelming the receiver
Receiver in every ACK advertises the available buffer space at its end Window calculation MIN(congestion control window, flow control window)
12
Sequencing Byte sequence numbers
TCP receiver buffers out of order segments and reassembles them later Starting sequence number randomly chosen during connection establishment Why? 3 1 2 4 1 given to app 2 given to app Loss 4 buffered (not given to app) 3 & 4 given to app 4 discarded
13
TCP Segment Format 16 bit SRC Port 16 bit DST Port
32 bit sequence number 32 bit ACK number HL resvd flags 16 bit window size Flags: URG, ACK, PSH, RST, SYN, FIN 16 bit TCP checksum 16 bit urgent pointer Options (if any) Data
14
TCP Flavors TCP-Tahoe TCP-Reno TCP-newReno TCP-Vegas, TCP-SACK
W=1 adaptation on congestion TCP-Reno W=W/2 adaptation on fast retransmit, W=1 on timeout TCP-newReno TCP-Reno + fast recovery TCP-Vegas, TCP-SACK
15
TCP Tahoe Slow-start Congestion control upon time-out or DUP-ACKs
When the sender receives 3 duplicate ACKs for the same sequence number, sender infers a loss Congestion window reduced to 1 and slow-start performed again Simple Congestion control too aggressive
16
TCP Reno Tahoe + Fast re-transmit
Packet loss detected both through timeouts, and through DUP-ACKs Sender reduces window by half, the ssthresh is set to half of current window, and congestion avoidance is performed (window increases only by 1 every round-trip time) Fast recovery ensures that pipe does not become empty Window cut-down to 1 (and subsequent slow-start) performed only on time-out
17
TCP New-Reno TCP-Reno with more intelligence during fast recovery
In TCP-Reno, the first partial ACK will bring the sender out of the fast recovery phase Results in timeouts when there are multiple losses In TCP New-Reno, partial ACK is taken as an indication of another lost packet (which is immediately retransmitted). Sender comes out of fast recovery only after all outstanding packets (at the time of first loss) are ACKed
18
User Datagram Protocol (UDP)
Simpler cousin of TCP No reliability, sequencing, congestion control, flow control, or connection management! Serves solely as a labeling mechanism for demultiplexing at the receiver end Use predominantly by protocols that do no require the strict service guarantees offered by TCP (e.g. real-time multimedia protocols) Additional intelligence built at the application layer if needed
19
UDP Header Src Port Dst Port Length: length of header + data (min = 8)
Checksum
20
Puzzle Two great mathematicians S & P
S knows the sum of two positive integers (> 1) x and y P knows the product of x and y S calls P and says “You cannot find the two numbers” P replies “I know the two numbers” S responds “I know the two numbers too” What are the two numbers?!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.