Download presentation
Presentation is loading. Please wait.
1
Pushdown Automata PDAs
3
Autómatas a Pila Los Autómatas a Pila permiten analizar palabras para reconocer si pertenecen o no a lenguajes de tipo 2, independientes del contexto. Tienen la misma estructura que los Autómatas Finitos, pero se añade una pila (memoria auxiliar) para poder guardar información que podrá ser útil en momentos posteriores del análisis. Definición Se definen los Autómatas a pila como:
7
Pushdown Automaton -- PDA
Input String Stack States
8
Initial Stack Symbol Stack Stack stack head top bottom special symbol
Appears at time 0
9
The States Pop symbol Input symbol Push symbol
10
input stack top Replace
11
input stack top Push
12
input stack top Pop
13
input stack top No Change
14
Empty Stack input stack empty Pop top The automaton HALTS No possible transition after
15
A Possible Transition input stack Pop top
16
PDAs are non-deterministic
Non-Determinism PDAs are non-deterministic Allowed non-deterministic transitions
17
Example PDA PDA
18
Basic Idea: Push the a’s on the stack 2. Match the b’s on input with a’s on stack 3. Match found
19
Execution Example: Time 0 Input Stack current state
20
Time 1 Input Stack
21
Time 2 Input Stack
22
Time 3 Input Stack
23
Time 4 Input Stack
24
Time 5 Input Stack
25
Time 6 Input Stack
26
Time 7 Input Stack
27
Time 8 Input Stack accept
28
A string is accepted if there is
a computation such that: All the input is consumed AND The last state is an accepting state At the end of the computation, we do not care about the stack contents (the stack can be empty at the last state)
29
The input string is accepted by the PDA:
30
In general, is the language accepted by the PDA:
31
Rejection Example: Time 0 Input Stack current state
32
Rejection Example: Time 1 Input Stack current state
33
Rejection Example: Time 2 Input Stack current state
34
Rejection Example: Time 3 Input Stack current state
35
Rejection Example: Time 4 Input Stack current state
36
Rejection Example: Time 4 Input Stack reject current state
37
The input string is rejected by the PDA:
38
no computation such that:
A string is rejected if there is no computation such that: All the input is consumed AND The last state is an accept state At the end of the computation, we do not care about the stack contents
39
Another PDA example PDA
40
Basic Idea: Push v on stack 3. Match on input with v on stack 2. Guess middle of input 4. Match found
41
Execution Example: Time 0 Input Stack
42
Time 1 Input Stack
43
Time 2 Input Stack
44
Time 3 Input Guess the middle of string Stack
45
Time 4 Input Stack
46
Time 5 Input Stack
47
Time 6 Input Stack accept
48
Rejection Example: Time 0 Input Stack
49
Time 1 Input Stack
50
Time 2 Input Stack
51
Time 3 Input Guess the middle of string Stack
52
Time 4 Input Stack
53
Time 5 There is no possible transition. Input Input is not consumed Stack
54
Another computation on same string:
Input Time 0 Stack
55
Time 1 Input Stack
56
Time 2 Input Stack
57
Time 3 Input Stack
58
Time 4 Input Stack
59
Time 5 Input No final state is reached Stack
60
There is no computation
that accepts string
61
Another PDA example PDA
62
Execution Example: Time 0 Input Stack
63
Time 1 Input Stack
64
Time 2 Input Stack
65
Time 3 Input Stack accept
66
Rejection example: Time 0 Input Stack
67
Time 1 Input Stack
68
Time 2 Input Stack
69
Time 3 Input Stack
70
Time 4 Input Stack Halt and Reject
71
Pushing Strings Pop symbol Input symbol Push string
72
Example: input pushed string stack top Push
73
Another PDA example PDA
74
Execution Example: Time 0 Input Stack current state
75
Time 1 Input Stack
76
Time 3 Input Stack
77
Time 4 Input Stack
78
Time 5 Input Stack
79
Time 6 Input Stack
80
Time 7 Input Stack
81
Time 8 Input Stack accept
82
Formalities for PDAs
83
Transition function:
84
Transition function:
85
Formal Definition Pushdown Automaton (PDA) Final states States Input
alphabet Stack start symbol Transition function Initial state Stack alphabet
86
Instantaneous Description
Current state Current stack contents Remaining input
87
Example: Instantaneous Description Input Time 4: Stack
88
Example: Instantaneous Description Input Time 5: Stack
89
We write: Time 4 Time 5
90
A computation:
91
For convenience we write:
92
Formal Definition Language of PDA : Initial state Final state
93
Example: PDA :
94
PDA :
95
Therefore: PDA :
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.