Presentation is loading. Please wait.

Presentation is loading. Please wait.

ME 475/675 Introduction to Combustion

Similar presentations


Presentation on theme: "ME 475/675 Introduction to Combustion"β€” Presentation transcript:

1 ME 475/675 Introduction to Combustion
Lecture 37 Laminar fuel jets, Similarity of axial velocity and fuel concentration, Diffusion flame length

2 Announcements HW16 Ch. 9 (8, 10, 12) Due Monday

3 Ch. 9 Laminar Fuel Jet (not premixed or burning)
A non-reacting, constant-density laminar fuel jet in quiescent air No buoyancy Assume Temperature and Pressure are constant π‘€π‘Š 𝐹 = π‘€π‘Š 𝑂π‘₯ =π‘€π‘Š 𝜌 𝐹 = 𝜌 𝑂π‘₯ =𝜌 Schmidt number, 𝑆𝑐= 𝜈 π’Ÿ = πœ‡ πœŒπ’Ÿ =1 before 𝐿𝑒= 𝛼 π’Ÿ =1 For π‘₯< π‘₯ 𝑐 Potential core is not affected by viscosity Centerline: Dimensionless Speed, 𝑣 π‘₯,0 𝑣 𝑒 Fuel Mass Fraction π‘Œ 𝐹 = π‘š 𝐹 π‘š π‘‘π‘œπ‘‘π‘Žπ‘™ Constant in Core = 1 Then decrease due to spreading Axial Speed and mass fraction profiles 𝑣 π‘₯,0 𝑣 𝑒 and π‘Œ 𝐹 versus r Spread out as x increases Max magnitude Decreases Fuel 𝜌 𝑒 , 𝑣 𝑒 ,πœ‡ 𝑄 𝐹 = 𝑣 𝑒 πœ‹ 𝑅 2 π‘š 𝐹 = 𝜌 𝑒 𝑣 𝑒 πœ‹ 𝑅 2

4 Variables and Boundary Conditions
π‘₯ Find 𝑣 π‘₯ 𝑣 𝑒 , 𝑣 π‘Ÿ 𝑣 𝑒 , π‘Œ 𝐹 =𝑓𝑛(π‘₯,π‘Ÿ) π‘Ÿ=0 πœ• 𝑣 π‘₯ 𝑣 𝑒 πœ•π‘Ÿ = πœ• π‘Œ 𝐹 πœ•π‘Ÿ = 𝑣 π‘Ÿ 𝑣 𝑒 =0 π‘Ÿβ†’βˆž, 𝑣 π‘₯ = π‘Œ 𝐹 =0 𝑣 π‘₯ 𝑣 π‘Ÿ π‘Ÿ π‘Ÿ=𝑅 π‘₯=0 π‘Ÿ<𝑅 𝑣 π‘₯ 𝑣 𝑒 = π‘Œ 𝐹 =1 β€œTop Hat” Profile π‘₯=0 π‘Ÿ>𝑅 𝑣 π‘₯ = π‘Œ 𝐹 =0 Find axial and radial velocity 𝑣 π‘₯ , 𝑣 π‘Ÿ and fuel concentration π‘Œ 𝐹 versus π‘₯ and π‘Ÿ Assume steady and axis-symmetric (use radial coordinates) Note that 𝑣 π‘₯ 𝑣 𝑒 and π‘Œ 𝐹 have the same boundary conditions Away from flame expect 𝑣 π‘Ÿ <0 (because axial mass flow rate increases with x)

5 Conservation Equations (radial coordinates, p. 314)
Mass: πœ• 𝑣 π‘₯ πœ•π‘₯ βˆ’ 1 π‘Ÿ πœ• 𝑣 π‘Ÿ πœ•π‘Ÿ 𝑣 π‘Ÿ π‘Ÿ =0 1st order partial diff eqn. Axial Momentum: 𝑣 π‘₯ πœ• 𝑣 π‘₯ πœ•π‘₯ + 𝑣 π‘Ÿ πœ• 𝑣 π‘₯ πœ•π‘Ÿ = 𝜈 1 π‘Ÿ πœ• πœ•π‘Ÿ π‘Ÿ 𝑑 𝑣 π‘₯ π‘‘π‘Ÿ 2nd order partial diff eqn. Species 𝑣 π‘₯ πœ• π‘Œ 𝐹 πœ•π‘₯ + 𝑣 π‘Ÿ πœ• π‘Œ 𝐹 πœ•π‘Ÿ =π’Ÿ 1 π‘Ÿ πœ• πœ•π‘Ÿ π‘Ÿ 𝑑 π‘Œ 𝐹 π‘‘π‘Ÿ 2nd order partial diff eqn. π‘Œ 𝑂π‘₯ =1βˆ’ π‘Œ 𝐹 For Schmidt number 𝑆𝑐= 𝜈 π’Ÿ = πœ‡ πœŒπ’Ÿ =1 Axial momentum and species equations are the same (and have same BC’s) So expect π‘Œ 𝐹 = 𝑣 π‘₯ 𝑣 𝑒 =𝑓𝑛(π‘₯,π‘Ÿ) β€œReasonable” to assume: 𝑣 π‘₯ π‘₯,π‘Ÿ 𝑣 π‘₯ π‘₯,π‘Ÿ=0 = 𝑣 π‘₯ π‘₯,π‘Ÿ 𝑣 π‘₯,0 π‘₯ =𝑓𝑛 π‘Ÿ π‘₯ Similar but expanding shape for all x (this suggestions that a similarity solution may be used to solve) Define Jet fuel volume flow rate: 𝑄 𝐹 = 𝑣 𝑒 πœ‹ 𝑅 2 Jet initial momentum: 𝐽 𝑒 = 𝑄 𝐹 𝜌 𝑒 𝑣 𝑒 = 𝑣 𝑒 πœ‹ 𝑅 2 𝜌 𝑒 𝑣 𝑒 = 𝜌 𝑒 𝑣 𝑒 2 πœ‹ 𝑅 2

6 Dimensionless Similarity Variable
πœ‰= 3 𝜌 𝑒 𝐽 𝑒 16πœ‹ πœ‡ π‘Ÿ π‘₯ (Greek letter Xi) Velocity Solutions (Take my word for it, p. 315) 𝑣 π‘₯ = 3 8πœ‹ 𝐽 𝑒 πœ‡π‘₯ πœ‰ βˆ’ where 𝐽 𝑒 = 𝜌 𝑒 𝑣 𝑒 2 πœ‹ 𝑅 2 𝑣 π‘Ÿ = 3 𝐽 𝑒 16πœ‹ 𝜌 𝑒 1/2 1 π‘₯ πœ‰βˆ’ πœ‰ πœ‰ 𝑣 π‘₯ = 3 8πœ‹ 𝜌 𝑒 𝑣 𝑒 2 πœ‹ 𝑅 2 πœ‡π‘₯ πœ‰ βˆ’2 𝑣 π‘₯ 𝑣 𝑒 = 𝜌 𝑒 𝑣 𝑒 𝑅 πœ‡ 𝑅 π‘₯ πœ‰ βˆ’2 =0.375 𝑅𝑒 𝑗 𝑅 π‘₯ πœ‰ βˆ’2 = π‘Œ 𝐹 𝑣 π‘₯,π‘Ÿ=0 𝑣 𝑒 𝑣 π‘₯ 𝑣 π‘₯,π‘Ÿ=0 Jet Reynolds number 𝑅𝑒 𝑗 = 𝜌 𝑒 𝑣 𝑒 𝑅 πœ‡ 𝑣 π‘₯ 𝑣 π‘₯,π‘Ÿ=0 𝑣 π‘Ÿ 𝑣 π‘₯,π‘Ÿ=0 πœ‰

7 Dimensionless Solutions
𝑣 π‘₯ 𝑣 𝑒 =0.375 𝑅𝑒 𝑗 𝑅 π‘₯ πœ‰ βˆ’2 , where πœ‰= 3 𝜌 𝑒 𝐽 𝑒 16πœ‹ πœ‡ π‘Ÿ π‘₯ At the centerline π‘Ÿ=0, πœ‰=0, 𝑣 π‘₯ = 𝑣 π‘₯,0 , 𝑣 π‘₯,π‘Ÿ=0 𝑣 𝑒 = 𝑣 π‘₯,0 𝑣 𝑒 =0.375 𝑅𝑒 𝑗 𝑅 π‘₯ Centerline speed decreases with x Find π‘₯ 𝑅 for a given decrease 𝑣 π‘₯,0 𝑣 𝑒 π‘₯ 𝑅 = 𝑅𝑒 𝑗 𝑣 π‘₯,0 𝑣 𝑒 (increases as 𝑅𝑒 𝑗 increases) A given 𝑣 π‘₯,0 𝑣 𝑒 moves downstream (Decays less) as 𝑅𝑒 𝑗 increases 𝑣 π‘₯ 𝑣 π‘₯,0 = 1+ πœ‰ βˆ’2 =𝑓𝑛 πœ‰ =𝑓𝑛 π‘Ÿ π‘₯ Consistent with our β€œreasonable” assumption 𝑅𝑒 𝑗,2 > 𝑅𝑒 𝑗,1 𝑅𝑒 𝑗,1

8 Fuel Mass Fraction (dimensionless)
For Schmidt number 𝑆𝑐= 𝜈 π’Ÿ = πœ‡ πœŒπ’Ÿ =1 π‘Œ 𝐹 =0.375 𝑅𝑒 𝑗 𝑅 π‘₯ πœ‰ βˆ’2 Recall 𝑣 π‘₯ 𝑣 𝑒 =0.375 𝑅𝑒 𝑗 𝑅 π‘₯ πœ‰ βˆ’2 Where Dimensionless Similarity Variable: πœ‰= 3 𝜌 𝑒 𝐽 𝑒 16πœ‹ πœ‡ π‘Ÿ π‘₯ Jet Reynold number: 𝑅𝑒 𝑗 = 𝜌 𝑒 𝑣 𝑒 𝑅 πœ‡ = 𝑣 𝑒 𝑅 𝜈 = 𝑣 𝑒 𝑅 π’Ÿ

9 Jet β€œhalf” radius π‘Ÿ 1 2 = radius where 𝑣 π‘₯ 𝑣 π‘₯,0 = 1 2
π‘Ÿ 1 2 π‘Ÿ = radius where 𝑣 π‘₯ 𝑣 π‘₯,0 = 1 2 𝑣 π‘₯ 𝑣 π‘₯,0 = 1+ πœ‰ βˆ’2 = 1 2 πœ‰ =4 2 βˆ’1 βˆ’1 = πœ‰ = 3 𝜌 𝑒 𝐽 𝑒 16πœ‹ πœ‡ π‘Ÿ π‘₯ = 3 𝜌 𝑒 𝜌 𝑒 𝑣 𝑒 2 πœ‹ 𝑅 2 16πœ‹ πœ‡ π‘Ÿ π‘₯ = 𝜌 𝑒 𝑣 𝑒 𝑅 πœ‡ π‘Ÿ π‘₯ π‘Ÿ π‘₯ = βˆ’ 𝑅𝑒 𝑗 = 𝑅𝑒 𝑗 Jet spreading half-angle 𝛼; tan 𝛼 = π‘Ÿ π‘₯ = 𝑅𝑒 𝑗 𝛼= tan βˆ’ 𝑅𝑒 𝑗 , angle decreases as 𝑣 𝑒 and 𝑅𝑒 𝑗 increase Fast Slow

10 Example 9.1 A jet of ethylene (C2H4) exits a 10-mm-diameter nozzle into still air at 300 K and 1 atm. Compare the spreading angles and axial locations where the jet centerline mass fraction drops to the stoichiometric value for initial jet velocities of 10 cm/s and 1.0 cm/s. The viscosity of ethylene at 300 k is 102.3x10-7 Ns/m2. This is a model for flame length (assuming buoyancy doesn’t effect it) Angle and flame length depend on flow rate, but not jet exit velocity or diameter separately.

11 End 2017 This lecture was somewhat confusing
Next year, could derive conservation equations and then find similarity solution (this would take time but help students understand the value of the partial differential equations) Students in this class generally have not taken ME 467, so do not know the Naiver-Stokes equations.

12 Now: Burning Fuel Jet (Diffusion Flame)
Laminar Diffusion flame structure T and Y versus r at different x Flame shape Assume flame surface is located where Ξ¦β‰ˆ1, stoichiometric mixture No reaction inside or outside this Products form in the flame β€œsheet” and then diffuse outward (and inward) No oxidizer inside the flame envelop Over-ventilated: enough oxidizer to burn all fuel Fuel 𝜌 𝑒 , 𝑣 𝑒 ,πœ‡ 𝑄 𝐹 = 𝑣 𝑒 πœ‹ 𝑅 2 π‘š 𝐹 = 𝜌 𝑒 𝑣 𝑒 πœ‹ 𝑅 2

13 Soot Incomplete pre-reaction of HC fuels form Soot particles
Forms on the fuel side (inside) of the flame surface and radiate orange and yellow Most soot is consumed as it flows through the hot flame β€œWings” form when unburned soot breaks through burning zone Smoke is soot that breaks through Roughly how long will the flame be?

14 Flame length (a measurable quantity)
Equivalence ratio Ξ¦ π‘Ÿ=0,π‘₯= 𝐿 𝑓 =1; π‘Œ 𝐹 = π‘Œ 𝐹,𝑠𝑑 For un-reacting fuel jet (no buoyancy) For Schmidt number 𝑆𝑐= 𝜈 π’Ÿ =1, π‘Œ 𝐹 =0.375 𝑅𝑒 𝑗 𝑅 π‘₯ πœ‰ βˆ’2 Dimensionless Similarity Variable: πœ‰= 3 𝜌 𝑒 𝐽 𝑒 16πœ‹ πœ‡ π‘Ÿ π‘₯ Jet Reynold number: 𝑅𝑒 𝑗 = 𝜌 𝑒 𝑣 𝑒 𝑅 πœ‡ = 𝑣 𝑒 𝑅 𝜈 = 𝑣 𝑒 𝑅 π’Ÿ Flame length, x= 𝐿 𝐹 where π‘Œ 𝐹 = π‘Œ 𝐹,𝑠𝑑 at π‘Ÿ=πœ‰=0 π‘Œ 𝐹,𝑠𝑑 =0.375 𝑅𝑒 𝑗 𝑅 𝐿 𝐹 βˆ’2 𝐿 𝐹 = 3 8 𝑅𝑒 𝑗 𝑅 π‘Œ 𝐹,𝑠𝑑 = 𝜌 𝑒 𝑣 𝑒 𝑅 πœ‡ π‘…πœ‹ π‘Œ 𝐹,𝑠𝑑 πœ‹ = 3 8πœ‹ 𝜌 𝑒 𝑄 𝐹 πœ‡ π‘Œ 𝐹,𝑠𝑑 = 3 8πœ‹ π‘š 𝐹 πœ‡ π‘Œ 𝐹,𝑠𝑑 = 3 8πœ‹ 𝑄 𝐹 𝜈 π‘Œ 𝐹,𝑠𝑑 = 3 8πœ‹ 𝑄 𝐹 π’Ÿ π‘Œ 𝐹,𝑠𝑑 Increases with 𝑄 𝐹 = 𝑣 𝑒 πœ‹ 𝑅 2 (not dependent on 𝑣 𝑒 π‘œπ‘Ÿ 𝑅 separately) Decreases with increasing π’Ÿ and π‘Œ 𝐹,𝑠𝑑 = π‘š 𝑂π‘₯ π‘š 𝐹𝑒 = 𝑁 𝑂π‘₯ 𝑁 𝐹𝑒 π‘€π‘Š 𝑂π‘₯ π‘€π‘Š 𝐹𝑒 = 1 1+𝑆 π‘€π‘Š 𝑂π‘₯ π‘€π‘Š 𝐹𝑒 Depend on fuel For 𝐢 π‘₯ 𝐻 𝑦 fuel, 𝑆=4.76 π‘₯+ 𝑦 4 , π‘€π‘Š 𝑂π‘₯ π‘€π‘Š 𝐹𝑒 = π‘₯ 𝑦 For y = 2x+2 (alkanes), decreases with increasing x What about π’Ÿ? What is the effect of buoyancy? Stoichiometric A/F Mass Ratio Stoichiometric A/F Mole Ratio


Download ppt "ME 475/675 Introduction to Combustion"

Similar presentations


Ads by Google