Download presentation
Presentation is loading. Please wait.
Published byAnastasia OโConnorโ Modified over 6 years ago
1
Amir Ali Ahmadi (Princeton University)
Iterative LP and SOCP-based approximations to semidefinite and sum of squares programs Georgina Hall Princeton University Joint work with: Amir Ali Ahmadi (Princeton University) Sanjeeb Dash (IBM)
2
Semidefinite programming: definition
A semidefinite program is an optimization problem of the form: Problem data: ๐ถ, ๐ด ๐ โ ๐ ๐ร๐ , ๐ ๐ โโ. min Xโ S ๐ร๐ ๐๐(๐ถ๐) s.t. ๐๐ ๐ด ๐ ๐ = ๐ ๐ , ๐=1,โฆ,๐ ๐โฝ0
3
Semidefinite programming: two applications
Nonnegativity of a polynomial ๐ of degree ๐๐
Copositivity of a square matrix ๐ด ๐(๐ฅ) nonnegative ๐ copositive โ ๐ฅ ๐ ๐๐ฅโฅ0 โ๐ฅโฅ0 ๐ ๐ฅ 1 ,โฆ, ๐ฅ ๐ =๐ง ๐ฅ ๐ ๐๐ง ๐ฅ , ๐โฝ0 (๐ง ๐ฅ : monomial vector of degree ๐) ๐=๐+๐ with ๐โฝ0, ๐โฅ0 Polynomial optimization Stability number of a graph min ๐ฅโ โ ๐ ๐(๐ฅ) max ๐พ ๐พ s.t. ๐ ๐ฅ โ๐พโฅ0, โ๐ฅ ๐ผ ๐บ =min ๐ s.t. ๐ ๐ผ+๐ด โ๐ฝ copositive โ โ โ min ๐ s.t. ๐ ๐ผ+๐ด โ๐ฝโNโฝ0,๐โฅ0 max ๐พ ๐พ s.t. ๐ ๐ฅ โ๐พ=๐ง ๐ฅ ๐ ๐๐ง ๐ฅ , ๐โฝ0 (De Klerk, Pasechnik)
4
Semidefinite programming: pros and cons
+: high-quality bounds for non convex problems. - : can take too long to solve if psd constraint is too big. Polynomial optimization ๐ ๐ฅ =๐ง ๐ฅ ๐ ๐๐ง ๐ฅ , ๐โฝ0, (๐ degree 2๐ and in ๐ vars) ๐ : size ๐+๐ ๐ ร ๐+๐ ๐ Stability number of a graph ๐:=๐ ๐ผ+๐ด โ๐ฝโ๐โฝ0 ๐ : size ๐ร๐ (๐: # of nodes in the graph) Typical laptop cannot minimize a degree-4 polynomial in more than a couple dozen variables. (PC: 3.4 GHz, 16 Gb RAM)
5
LP and SOCP-based inner approximations (1/2)
Problem SDPs do not scale well Idea Replace psd cone by LP or SOCP representable cones Candidate (Ahmadi, Majumdar) LP: A dd SOCP: ๐ด sdd A is diagonally dominant (dd) if ๐ ๐๐ โฅ ๐โ ๐ |๐ ๐๐ | , โ๐. A is scaled diagonally dominant (sdd) if โ a diagonal matrix ๐ท>0 s.t. ๐ท๐ด๐ท is dd. ๐ท ๐ท ๐ โ๐๐ท ๐ท ๐ โ๐๐ ๐ท ๐
6
LP and SOCP-based inner approximations (2/2)
Replacing psd cone by dd/sdd cones: +: fast bounds - : not always as good quality (compared to SDP) Iteratively construct a sequence of improving LP/SOCP-based cones Initialization: Start with the DD/SDD cone Method 1: Cholesky change of basis Method 2: Column Generation Method 3: r-s/dsos hierarchy
7
Method 1:Cholesky change of basis (1/7)
dd in the โright basisโ Goal: iteratively improve on basis ๐ง ๐ฅ . psd but not dd
8
Method 1:Cholesky change of basis (2/7)
? ๐ ๐ฅ =๐ง ๐ฅ ๐ ๐๐ง ๐ฅ ๐โฝ0 ๐ ๐ฅ = ๐ง ๐ฅ ๐ ๐ ๐ง ๐ฅ ๐ diagonal or dd Cholesky decomposition ๐=๐ฟ ๐ฟ ๐ โ๐ ๐ฅ = ๐ฟ ๐ ๐ง ๐ฅ ๐ ๐ผ( ๐ฟ ๐ ๐ง ๐ฅ ) LDL decomposition ๐=๐ฟ๐ท ๐ฟ ๐ โ๐ ๐ฅ = ๐ฟ ๐ ๐ง ๐ฅ ๐ ๐ท( ๐ฟ ๐ ๐ง ๐ฅ ) Eigenvalue decomposition ๐= ฮฉ ๐ ฮฮฉโ๐ ๐ฅ = ฮฉ๐ง ๐ฅ ๐ ฮ(ฮฉ๐ง ๐ฅ ) Gives ๐ =๐ผ Computationally efficient โฆ
9
Method 1: Cholesky change of basis (3/7)
SDP to solve min ๐๐(๐ถ๐ ) s.t. ๐๐ ๐ด ๐ ๐ = ๐ ๐ , ๐โฝ0 Initialize Solve: min ๐๐(๐ถ๐ ) s.t. ๐๐ ๐ด ๐ ๐ = ๐ ๐ , ๐ dd/sdd Step 1 Compute: ๐ ๐ =๐โ๐๐( ๐ โ ) Step 2 Solve: min ๐๐(๐ถ๐ ) s.t. ๐๐ ๐ด ๐ ๐ = ๐ ๐ , ๐= ๐ ๐ ๐ ๐ ๐ ๐ , ๐ dd/sdd ๐โ๐+๐ One iteration of this method on ๐ผ+๐ฅ๐ด+๐ฆ๐ต, ๐ด,๐ต fixed 10ร10, generated randomly
10
Method 1: Cholesky change of basis (4/7)
Example 1: minimizing a form over the sphere Theorem: The 1st iteration of Cholesky is always feasible for this problem. Proof: max ๐พ ๐ .๐ก. ๐ ๐ฅ โ๐พ ๐ ๐ฅ ๐ 2 ๐ dsos First iteration of the method Need to show: is feasible. min ๐(๐ฅ) ๐ .๐ก. ๐ ๐ฅ ๐ 2 =1 Initial problem max ๐พ ๐ .๐ก. ๐ ๐ฅ โ๐พ ๐ ๐ฅ ๐ 2 ๐ sos SOS relaxation Idea: ๐ซ๐บ๐ถ ๐บ ๐,๐๐
โ๐ผ>0 s.t. ๐ผ๐ ๐ฅ + 1โ๐ผ ๐ (๐ฅ) is dsos โโ๐ผ>0 s.t. ๐ผ 1โ๐ผ ๐ ๐ฅ + ๐ (๐ฅ) is dsos ๐ ๐ฅ โ ๐ ๐ฅ ๐ 2 ๐
11
Method 1: Cholesky change of basis (5/7)
Example 1: minimizing a degree-4 polynomial in 4 variables (contโd)
12
Method 1: Cholesky change of basis (6/7)
Example 2: SDP relaxation for computing the stability number Theorem: The 1st iteration of Cholesky is always feasible for this problem. Proof: min ๐ ๐ .๐ก. ๐(๐ผ+๐ด)โ๐ฝ=๐+๐ ๐โฝ0, ๐โฅ0 Initial problem min ๐ ๐ .๐ก. ๐(๐ผ+๐ด)โ๐ฝ=๐+๐ ๐ ๐๐, ๐โฅ0 1st iteration of the method Need to show: is feasible. = ๐โ1 if ๐,๐ โ๐ธ (๐๐ก ๐๐๐ ๐ก ๐ ๐ ) โ1 if ๐,๐ โ๐ธ (๐๐ก ๐๐๐ ๐ก ๐โ ๐ ๐ ) ๐(๐ผ+๐ด)โ๐ฝ= ๐โ1 โ โ โ โฑ โ โ โ ๐โ1 = ๐โ1 โ โ โ โฑ โ โ โ ๐โ โ โ โ 0 โ โ โ 0 = 0 if ๐,๐ โ๐ธ โ1 if ๐,๐ โ๐ธ , ๐=๐โ min ๐ ๐ ๐ +1 = ๐โ1 if ๐,๐ โ๐ธ 0 if ๐,๐ โ๐ธ ๐ท ๐ต
13
Method 1: Cholesky change of basis (7/7)
Example 2: stability number of the Petersen graph 100 instances of an Erdรถs-Rรฉnyi graph with ๐,๐ =(20,0.5)
14
Method 2: Column generation (1/6)
Facet description ๐= ๐ฅ ๐ด๐ฅโค๐}, where ๐ด= ๐ 1 ๐ โฎ ๐ ๐ ๐ , ๐โ โ ๐ ๐ ๐ ๐ ๐ ๐ Corner description ๐={ ๐ ๐ผ ๐ ๐ฆ ๐ | ๐ผ ๐ โฅ0 , ๐ ๐ผ ๐ =1} ๐ฆ ๐ ๐ฆ ๐ Polytope ๐ DD cone SDD cone Facet description ๐ท ๐ท ๐ = ๐ ๐ ๐๐ โฅ ๐โ ๐ |๐ ๐๐ |, โ๐ } ๐๐ท ๐ท ๐ = ๐ โ diagonal ๐ท>0 s.t. ๐ท๐๐ท dd} Extreme ray description ๐ฃ ๐ has at most two nonzero components =ยฑ1 ๐ ๐ท๐ท :={ ๐ฃ ๐ } ๐ ๐ is all zeros except for one component in each row=1 ๐ ๐๐ท๐ท :={ ๐ ๐ } ๐ท ๐ท ๐ = ๐ ๐ฃ ๐ ๐ฃ ๐ T | ๐ผ ๐ โฅ0 + ๐ผ ๐ ๐๐ท ๐ท ๐ = ๐ + ๐ ๐ ฮ ๐ ๐ ๐ ๐ | ฮ ๐ โฝ0
15
Method 2: Column Generation (2/6)
Main idea: add new atoms to the ๐ท ๐ท ๐ /๐๐ท ๐ท ๐ cones. Initial SDP max ๐ฆโ โ ๐ ๐ ๐ ๐ฆ ๐ .๐ก. ๐ถโ ๐=1 ๐ ๐ฆ ๐ ๐ด ๐ โฝ0 Inner approximate with ๐๐ซ ๐ซ ๐ max ๐ฆโ โ ๐ ๐ ๐ ๐ฆ ๐ .๐ก. ๐ถโ ๐=1 ๐ ๐ฆ ๐ ๐ด ๐ = ๐ฝ ๐ ๐ฒ ๐ ๐ฝ ๐ ๐ป ๐ฒ ๐ โฝ๐, ๐ฝ ๐ โ ๐ฝ ๐บ๐ซ๐ซ Inner approximate with ๐ท ๐ท ๐ max ๐ฆโ โ ๐ ๐ ๐ ๐ฆ ๐ .๐ก. ๐ถโ ๐=1 ๐ ๐ฆ ๐ ๐ด ๐ = ๐ผ ๐ ๐ฃ ๐ ๐ฃ ๐ ๐ ๐ผ ๐ โฅ0, ๐ฃ ๐ โ ๐ ๐ท๐ท Take the dual min ๐โ ๐ ๐ ๐ก๐(๐ถ๐) ๐ .๐ก. ๐ก๐ ๐ด ๐ ๐ = ๐ ๐ ๐ฃ ๐ ๐ ๐ ๐ฃ ๐ โฅ0 Take the dual min ๐โ ๐ ๐ ๐ก๐(๐ถ๐) ๐ .๐ก. ๐ก๐ ๐ด ๐ ๐ = ๐ ๐ ๐ฝ ๐ ๐ป ๐ฟ ๐ฝ ๐ โฝ๐ Find a new โatomโ Pick ๐โ โ ๐ร2 s.t. ๐ฝ ๐ป ๐ฟ๐ฝ ๐. Find a new โatomโ Pick ๐ฃ s.t. ๐ฃ ๐ ๐๐ฃ<0. Add ๐ฃ to primal DD inner approx. max ๐ฆโ โ ๐ ๐ ๐ ๐ฆ ๐ .๐ก. ๐ถโ ๐=1 ๐ ๐ฆ ๐ ๐ด ๐ = ๐ผ ๐ ๐ฃ ๐ ๐ฃ ๐ ๐ +๐ถ๐ ๐ ๐ป ๐ผ ๐ โฅ0, ๐ฃ ๐ โ ๐ ๐ท๐ท , ๐ถโฅ๐ Add ๐ to primal SDD inner approx. max ๐ฆโ โ ๐ ๐ ๐ ๐ฆ ๐ .๐ก. ๐ถโ ๐=1 ๐ ๐ฆ ๐ ๐ด ๐ = ๐ฝ ๐ ๐ฒ ๐ ๐ฝ ๐ ๐ป +๐ฝ๐ฒ ๐ ๐ ๐ฒ ๐ โฝ๐, ๐ฝ ๐ โ ๐ฝ ๐บ๐ซ๐ซ , ๐ฒโฝ๐ ๐ท๐บ๐ซ=๐ท๐บ ๐ซ โ ๐ซ๐ซ+1CG ๐ซ ๐ซ โ ๐ซ๐ซ
16
Method 2: Column Generation (3/6)
Suggestion 1: Take the eigenvector corresponding to the most negative eigenvalue Idea: Add an atom ๐ฃ that satisfies ๐ฃ ๐ ๐๐ฃ<0. How to pick such a ๐? Suggestion 2: Take ๐ฃ with three nonzero elements corresponding to ยฑ1. โฆ
17
Method 2: Column Generation (4/6)
Five iterations of column generation for ๐ผ+๐ฅ๐ด+๐ฆ๐ต, ๐ด,๐ต fixed 10ร10, generated randomly ๐ฆ ๐ฅ Column generation method: adds atoms to the initial cones Cholesky change of basis method: โlinearly transformsโ existing atoms ๐ฃ ๐ โ ๐ ๐ ๐ฃ ๐ , where ๐=๐โ๐๐( ๐ โ )
18
Method 2: Column Generation (5/6)
Example 1: stability number of the Petersen graph Petersen Graph Upper bound on the stability number through SDP: min ๐ s.t. ๐ ๐ผ+๐ด โ๐ฝโNโฝ0,๐โฅ0 Apply Column Generation technique to this SDP
19
Method 2: Column Generation (6/6)
Example 2: minimizing a degree-4 polynomial ๐=๐๐ ๐=๐๐ ๐=๐๐ ๐=๐๐ ๐=๐๐ bd t(s) DSOS -10.96 0.38 -18.01 0.74 -26.45 15.51 -36.52 7.88 -62.30 10.68 SDSOS -10.43 0.53 -17.33 1.06 -25.79 8.72 -36.04 5.65 -61.25 18.66 ๐ท๐๐ ๐ ๐ -5.57 31.19 -9.02 471.39 -20.08 600 -32.28 -35.14 SOS -3.26 5.60 -3.58 82.22 -3.71 NA ๐=๐๐ ๐=๐๐ ๐=๐๐ ๐=๐๐ ๐=๐๐ bd t(s) ๐ท๐๐ ๐ ๐ -6.20 10.96 -12.38 70.70 -20.08 508.63 NA 1SDSOS -8.97 14.39 -15.29 82.30 -23.14 538.54
20
Method 3: r-s/dsos hierarchy (1/3)
A polynomial ๐ is r-dsos if ๐ ๐ฅ ๐ ๐ฅ ๐ 2 ๐ is dsos. A polynomial ๐ is r-sdsos if ๐ ๐ฅ ๐ ๐ฅ ๐ 2 ๐ is sdsos. Defines a hierarchy based on ๐. Proof of positivity using LP. Theorem [Ahmadi, Majumdar] Any even positive definite form p is r-dsos for some r. Proof: Follows from a result by Polya.
21
Method 3: r-s/dsos hierarchy (2/3)
Example: certifying stability of a switched linear system ๐ฅ ๐+1 = ๐ด ๐ ๐ ๐ฅ ๐ where ๐ด ๐ ๐ โ{ ๐ด 1 ,โฆ, ๐ด ๐ } Recall: Theorem 2 [Parrilo, Jadbabaie]: ๐ ๐ด 1 ,โฆ, ๐ด ๐ <1 โ โ a pd polynomial Lyapunov function ๐(๐ฅ) such that ๐ ๐ฅ โ๐ ๐ด ๐ ๐ฅ >0, โ๐ฅโ 0. Theorem 1: A switched linear system is stable if and only if ๐ ๐ด 1 โฆ, ๐ด ๐ <1.
22
Method 3: r-s/dsos hierarchy (3/3)
Theorem: For nonnegative A 1 ,โฆ, A m , ๐ ๐ด 1 ,โฆ, ๐ด ๐ <1โ โ ๐โ โ and a polynomial Lyapunov function ๐(๐ฅ) such that ๐ ๐ฅ r-dsos and ๐ ๐ฅ . 2 โ๐ ๐ด ๐ ๐ฅ r-dsos. Proof: โ โ โ ๐ ๐ฅ โฅ0 and ๐ ๐ฅ โ๐ ๐ด ๐ ๐ฅ โฅ0 for any ๐ฅโฅ0. Combined to ๐ด ๐ โฅ0, this implies that ๐ฅ ๐+1 = ๐ด ๐(๐) ๐ฅ ๐ is stable for ๐ฅ 0 โฅ0. This can be extended to any ๐ฅ 0 by noting that ๐ฅ 0 = ๐ฅ 0 + โ ๐ฅ 0 โ , ๐ฅ 0 + , ๐ฅ 0 โ โฅ0. (โ) From Theorem 2, and using Polyaโs result as ๐(๐ฅ . 2 ) and ๐ ๐ฅ . 2 โ๐ ๐ด ๐ ๐ฅ are even forms. (โ)
23
Cholesky change of basis
Main messages Can construct iterative inner approximations of the cone of nonnegative polynomials using LPs and SOCPs. Presented three methods: Cholesky change of basis Column Generation r-s/dsos hierarchies Initialization Initialize with dsos/sdsos polynomials (or dd/sdd matrices) Method Rotate existing โatomsโ of the cone of dsos/sdsos polynomials Add new atoms to the extreme rays of the cone of dsos/sdsos polynomials Use multipliers to certify nonnegativity of more polynomials. Size of the LP/SOCPs obtained Does not grow (but possibly denser) Grows slowly Grows quickly Objective taken into consideration Yes No Can beat the SOS bound
24
Thank you for listening
Questions? Want to learn more?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.