Presentation is loading. Please wait.

Presentation is loading. Please wait.

Amir Ali Ahmadi (Princeton University)

Similar presentations


Presentation on theme: "Amir Ali Ahmadi (Princeton University)"โ€” Presentation transcript:

1 Amir Ali Ahmadi (Princeton University)
Iterative LP and SOCP-based approximations to semidefinite and sum of squares programs Georgina Hall Princeton University Joint work with: Amir Ali Ahmadi (Princeton University) Sanjeeb Dash (IBM)

2 Semidefinite programming: definition
A semidefinite program is an optimization problem of the form: Problem data: ๐ถ, ๐ด ๐‘– โˆˆ ๐‘† ๐‘›ร—๐‘› , ๐‘ ๐‘– โˆˆโ„. min Xโˆˆ S ๐‘›ร—๐‘› ๐‘‡๐‘Ÿ(๐ถ๐‘‹) s.t. ๐‘‡๐‘Ÿ ๐ด ๐‘– ๐‘‹ = ๐‘ ๐‘– , ๐‘–=1,โ€ฆ,๐‘š ๐‘‹โ‰ฝ0

3 Semidefinite programming: two applications
Nonnegativity of a polynomial ๐’‘ of degree ๐Ÿ๐’… Copositivity of a square matrix ๐‘ด ๐‘(๐‘ฅ) nonnegative ๐‘€ copositive โ‡” ๐‘ฅ ๐‘‡ ๐‘€๐‘ฅโ‰ฅ0 โˆ€๐‘ฅโ‰ฅ0 ๐‘ ๐‘ฅ 1 ,โ€ฆ, ๐‘ฅ ๐‘› =๐‘ง ๐‘ฅ ๐‘‡ ๐‘„๐‘ง ๐‘ฅ , ๐‘„โ‰ฝ0 (๐‘ง ๐‘ฅ : monomial vector of degree ๐‘‘) ๐‘€=๐‘ƒ+๐‘ with ๐‘ƒโ‰ฝ0, ๐‘โ‰ฅ0 Polynomial optimization Stability number of a graph min ๐‘ฅโˆˆ โ„ ๐‘› ๐‘(๐‘ฅ) max ๐›พ ๐›พ s.t. ๐‘ ๐‘ฅ โˆ’๐›พโ‰ฅ0, โˆ€๐‘ฅ ๐›ผ ๐บ =min ๐œ† s.t. ๐œ† ๐ผ+๐ด โˆ’๐ฝ copositive โ‡” โ‡’ โ‡ min ๐œ† s.t. ๐œ† ๐ผ+๐ด โˆ’๐ฝโˆ’Nโ‰ฝ0,๐‘โ‰ฅ0 max ๐›พ ๐›พ s.t. ๐‘ ๐‘ฅ โˆ’๐›พ=๐‘ง ๐‘ฅ ๐‘‡ ๐‘„๐‘ง ๐‘ฅ , ๐‘„โ‰ฝ0 (De Klerk, Pasechnik)

4 Semidefinite programming: pros and cons
+: high-quality bounds for non convex problems. - : can take too long to solve if psd constraint is too big. Polynomial optimization ๐‘ ๐‘ฅ =๐‘ง ๐‘ฅ ๐‘‡ ๐‘„๐‘ง ๐‘ฅ , ๐‘„โ‰ฝ0, (๐‘ degree 2๐‘‘ and in ๐‘› vars) ๐‘„ : size ๐‘›+๐‘‘ ๐‘‘ ร— ๐‘›+๐‘‘ ๐‘‘ Stability number of a graph ๐‘ƒ:=๐œ† ๐ผ+๐ด โˆ’๐ฝโˆ’๐‘โ‰ฝ0 ๐‘ƒ : size ๐‘›ร—๐‘› (๐‘›: # of nodes in the graph) Typical laptop cannot minimize a degree-4 polynomial in more than a couple dozen variables. (PC: 3.4 GHz, 16 Gb RAM)

5 LP and SOCP-based inner approximations (1/2)
Problem SDPs do not scale well Idea Replace psd cone by LP or SOCP representable cones Candidate (Ahmadi, Majumdar) LP: A dd SOCP: ๐ด sdd A is diagonally dominant (dd) if ๐‘Ž ๐‘–๐‘– โ‰ฅ ๐‘—โ‰ ๐‘– |๐‘Ž ๐‘–๐‘— | , โˆ€๐‘–. A is scaled diagonally dominant (sdd) if โˆƒ a diagonal matrix ๐ท>0 s.t. ๐ท๐ด๐ท is dd. ๐ท ๐ท ๐‘› โŠ†๐‘†๐ท ๐ท ๐‘› โŠ†๐‘ƒ๐‘† ๐ท ๐‘›

6 LP and SOCP-based inner approximations (2/2)
Replacing psd cone by dd/sdd cones: +: fast bounds - : not always as good quality (compared to SDP) Iteratively construct a sequence of improving LP/SOCP-based cones Initialization: Start with the DD/SDD cone Method 1: Cholesky change of basis Method 2: Column Generation Method 3: r-s/dsos hierarchy

7 Method 1:Cholesky change of basis (1/7)
dd in the โ€œright basisโ€ Goal: iteratively improve on basis ๐‘ง ๐‘ฅ . psd but not dd

8 Method 1:Cholesky change of basis (2/7)
? ๐‘ ๐‘ฅ =๐‘ง ๐‘ฅ ๐‘‡ ๐‘„๐‘ง ๐‘ฅ ๐‘„โ‰ฝ0 ๐‘ ๐‘ฅ = ๐‘ง ๐‘ฅ ๐‘‡ ๐‘„ ๐‘ง ๐‘ฅ ๐‘„ diagonal or dd Cholesky decomposition ๐‘„=๐ฟ ๐ฟ ๐‘‡ โ‡’๐‘ ๐‘ฅ = ๐ฟ ๐‘‡ ๐‘ง ๐‘ฅ ๐‘‡ ๐ผ( ๐ฟ ๐‘‡ ๐‘ง ๐‘ฅ ) LDL decomposition ๐‘„=๐ฟ๐ท ๐ฟ ๐‘‡ โ‡’๐‘ ๐‘ฅ = ๐ฟ ๐‘‡ ๐‘ง ๐‘ฅ ๐‘‡ ๐ท( ๐ฟ ๐‘‡ ๐‘ง ๐‘ฅ ) Eigenvalue decomposition ๐‘„= ฮฉ ๐‘‡ ฮ”ฮฉโ‡’๐‘ ๐‘ฅ = ฮฉ๐‘ง ๐‘ฅ ๐‘‡ ฮ”(ฮฉ๐‘ง ๐‘ฅ ) Gives ๐‘„ =๐ผ Computationally efficient โ€ฆ

9 Method 1: Cholesky change of basis (3/7)
SDP to solve min ๐‘‡๐‘Ÿ(๐ถ๐‘‹ ) s.t. ๐‘‡๐‘Ÿ ๐ด ๐‘– ๐‘‹ = ๐‘ ๐‘– , ๐‘‹โ‰ฝ0 Initialize Solve: min ๐‘‡๐‘Ÿ(๐ถ๐‘‹ ) s.t. ๐‘‡๐‘Ÿ ๐ด ๐‘– ๐‘‹ = ๐‘ ๐‘– , ๐‘‹ dd/sdd Step 1 Compute: ๐‘ˆ ๐‘˜ =๐‘โ„Ž๐‘œ๐‘™( ๐‘‹ โˆ— ) Step 2 Solve: min ๐‘‡๐‘Ÿ(๐ถ๐‘‹ ) s.t. ๐‘‡๐‘Ÿ ๐ด ๐‘– ๐‘‹ = ๐‘ ๐‘– , ๐‘‹= ๐‘ˆ ๐‘˜ ๐‘‡ ๐‘„ ๐‘ˆ ๐‘˜ , ๐‘„ dd/sdd ๐’Œโ‰”๐’Œ+๐Ÿ One iteration of this method on ๐ผ+๐‘ฅ๐ด+๐‘ฆ๐ต, ๐ด,๐ต fixed 10ร—10, generated randomly

10 Method 1: Cholesky change of basis (4/7)
Example 1: minimizing a form over the sphere Theorem: The 1st iteration of Cholesky is always feasible for this problem. Proof: max ๐›พ ๐‘ .๐‘ก. ๐‘ ๐‘ฅ โˆ’๐›พ ๐‘– ๐‘ฅ ๐‘– 2 ๐‘‘ dsos First iteration of the method Need to show: is feasible. min ๐‘(๐‘ฅ) ๐‘ .๐‘ก. ๐‘– ๐‘ฅ ๐‘– 2 =1 Initial problem max ๐›พ ๐‘ .๐‘ก. ๐‘ ๐‘ฅ โˆ’๐›พ ๐‘– ๐‘ฅ ๐‘– 2 ๐‘‘ sos SOS relaxation Idea: ๐‘ซ๐‘บ๐‘ถ ๐‘บ ๐’,๐Ÿ๐’… โˆƒ๐›ผ>0 s.t. ๐›ผ๐‘  ๐‘ฅ + 1โˆ’๐›ผ ๐‘ (๐‘ฅ) is dsos โ‡’โˆƒ๐›ผ>0 s.t. ๐›ผ 1โˆ’๐›ผ ๐‘  ๐‘ฅ + ๐‘ (๐‘ฅ) is dsos ๐‘  ๐‘ฅ โ‰” ๐‘– ๐‘ฅ ๐‘– 2 ๐‘‘

11 Method 1: Cholesky change of basis (5/7)
Example 1: minimizing a degree-4 polynomial in 4 variables (contโ€™d)

12 Method 1: Cholesky change of basis (6/7)
Example 2: SDP relaxation for computing the stability number Theorem: The 1st iteration of Cholesky is always feasible for this problem. Proof: min ๐œ† ๐‘ .๐‘ก. ๐œ†(๐ผ+๐ด)โˆ’๐ฝ=๐‘ƒ+๐‘ ๐‘ƒโ‰ฝ0, ๐‘โ‰ฅ0 Initial problem min ๐œ† ๐‘ .๐‘ก. ๐œ†(๐ผ+๐ด)โˆ’๐ฝ=๐‘ƒ+๐‘ ๐‘ƒ ๐‘‘๐‘‘, ๐‘โ‰ฅ0 1st iteration of the method Need to show: is feasible. = ๐œ†โˆ’1 if ๐‘–,๐‘— โˆˆ๐ธ (๐‘Ž๐‘ก ๐‘š๐‘œ๐‘ ๐‘ก ๐‘‘ ๐‘– ) โˆ’1 if ๐‘–,๐‘— โˆ‰๐ธ (๐‘Ž๐‘ก ๐‘š๐‘œ๐‘ ๐‘ก ๐‘›โˆ’ ๐‘‘ ๐‘– ) ๐œ†(๐ผ+๐ด)โˆ’๐ฝ= ๐œ†โˆ’1 โˆ— โˆ— โˆ— โ‹ฑ โˆ— โˆ— โˆ— ๐œ†โˆ’1 = ๐œ†โˆ’1 โˆ— โˆ— โˆ— โ‹ฑ โˆ— โˆ— โˆ— ๐œ†โˆ’ โˆ— โˆ— โˆ— 0 โˆ— โˆ— โˆ— 0 = 0 if ๐‘–,๐‘— โˆˆ๐ธ โˆ’1 if ๐‘–,๐‘— โˆ‰๐ธ , ๐œ†=๐‘›โˆ’ min ๐‘– ๐‘‘ ๐‘– +1 = ๐œ†โˆ’1 if ๐‘–,๐‘— โˆˆ๐ธ 0 if ๐‘–,๐‘— โˆ‰๐ธ ๐‘ท ๐‘ต

13 Method 1: Cholesky change of basis (7/7)
Example 2: stability number of the Petersen graph 100 instances of an Erdรถs-Rรฉnyi graph with ๐‘›,๐‘ =(20,0.5)

14 Method 2: Column generation (1/6)
Facet description ๐‘ƒ= ๐‘ฅ ๐ด๐‘ฅโ‰ค๐‘}, where ๐ด= ๐‘Ž 1 ๐‘‡ โ‹ฎ ๐‘Ž ๐‘š ๐‘‡ , ๐‘โˆˆ โ„ ๐‘š ๐‘ƒ ๐‘Ž ๐‘– ๐‘Ž ๐‘— Corner description ๐‘ƒ={ ๐‘– ๐›ผ ๐‘– ๐‘ฆ ๐‘– | ๐›ผ ๐‘– โ‰ฅ0 , ๐‘– ๐›ผ ๐‘– =1} ๐‘ฆ ๐‘– ๐‘ฆ ๐‘— Polytope ๐‘ƒ DD cone SDD cone Facet description ๐ท ๐ท ๐‘› = ๐‘€ ๐‘€ ๐‘–๐‘– โ‰ฅ ๐‘—โ‰ ๐‘– |๐‘€ ๐‘–๐‘— |, โˆ€๐‘– } ๐‘†๐ท ๐ท ๐‘› = ๐‘€ โˆƒ diagonal ๐ท>0 s.t. ๐ท๐‘€๐ท dd} Extreme ray description ๐‘ฃ ๐‘– has at most two nonzero components =ยฑ1 ๐‘‰ ๐ท๐ท :={ ๐‘ฃ ๐‘– } ๐‘‰ ๐‘– is all zeros except for one component in each row=1 ๐‘‰ ๐‘†๐ท๐ท :={ ๐‘‰ ๐‘– } ๐ท ๐ท ๐‘› = ๐‘– ๐‘ฃ ๐‘– ๐‘ฃ ๐‘– T | ๐›ผ ๐‘– โ‰ฅ0 + ๐›ผ ๐‘– ๐‘†๐ท ๐ท ๐‘› = ๐‘– + ๐‘‰ ๐‘– ฮ› ๐‘– ๐‘‰ ๐‘– ๐‘‡ | ฮ› ๐‘– โ‰ฝ0

15 Method 2: Column Generation (2/6)
Main idea: add new atoms to the ๐ท ๐ท ๐‘› /๐‘†๐ท ๐ท ๐‘› cones. Initial SDP max ๐‘ฆโˆˆ โ„ ๐‘š ๐‘ ๐‘‡ ๐‘ฆ ๐‘ .๐‘ก. ๐ถโˆ’ ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐ด ๐‘– โ‰ฝ0 Inner approximate with ๐’๐‘ซ ๐‘ซ ๐’ max ๐‘ฆโˆˆ โ„ ๐‘š ๐‘ ๐‘‡ ๐‘ฆ ๐‘ .๐‘ก. ๐ถโˆ’ ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐ด ๐‘– = ๐‘ฝ ๐’Š ๐šฒ ๐’Š ๐‘ฝ ๐’Š ๐‘ป ๐šฒ ๐’Š โ‰ฝ๐ŸŽ, ๐‘ฝ ๐’Š โˆˆ ๐‘ฝ ๐‘บ๐‘ซ๐‘ซ Inner approximate with ๐ท ๐ท ๐‘› max ๐‘ฆโˆˆ โ„ ๐‘š ๐‘ ๐‘‡ ๐‘ฆ ๐‘ .๐‘ก. ๐ถโˆ’ ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐ด ๐‘– = ๐›ผ ๐‘– ๐‘ฃ ๐‘– ๐‘ฃ ๐‘– ๐‘‡ ๐›ผ ๐‘– โ‰ฅ0, ๐‘ฃ ๐‘– โˆˆ ๐‘‰ ๐ท๐ท Take the dual min ๐‘‹โˆˆ ๐‘† ๐‘› ๐‘ก๐‘Ÿ(๐ถ๐‘‹) ๐‘ .๐‘ก. ๐‘ก๐‘Ÿ ๐ด ๐‘– ๐‘‹ = ๐‘ ๐‘– ๐‘ฃ ๐‘– ๐‘‡ ๐‘‹ ๐‘ฃ ๐‘– โ‰ฅ0 Take the dual min ๐‘‹โˆˆ ๐‘† ๐‘› ๐‘ก๐‘Ÿ(๐ถ๐‘‹) ๐‘ .๐‘ก. ๐‘ก๐‘Ÿ ๐ด ๐‘– ๐‘‹ = ๐‘ ๐‘– ๐‘ฝ ๐’Š ๐‘ป ๐‘ฟ ๐‘ฝ ๐’Š โ‰ฝ๐ŸŽ Find a new โ€œatomโ€ Pick ๐‘‰โˆˆ โ„ ๐‘›ร—2 s.t. ๐‘ฝ ๐‘ป ๐‘ฟ๐‘ฝ ๐ŸŽ. Find a new โ€œatomโ€ Pick ๐‘ฃ s.t. ๐‘ฃ ๐‘‡ ๐‘‹๐‘ฃ<0. Add ๐‘ฃ to primal DD inner approx. max ๐‘ฆโˆˆ โ„ ๐‘š ๐‘ ๐‘‡ ๐‘ฆ ๐‘ .๐‘ก. ๐ถโˆ’ ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐ด ๐‘– = ๐›ผ ๐‘– ๐‘ฃ ๐‘– ๐‘ฃ ๐‘– ๐‘‡ +๐œถ๐’— ๐’— ๐‘ป ๐›ผ ๐‘– โ‰ฅ0, ๐‘ฃ ๐‘– โˆˆ ๐‘‰ ๐ท๐ท , ๐œถโ‰ฅ๐ŸŽ Add ๐‘‰ to primal SDD inner approx. max ๐‘ฆโˆˆ โ„ ๐‘š ๐‘ ๐‘‡ ๐‘ฆ ๐‘ .๐‘ก. ๐ถโˆ’ ๐‘–=1 ๐‘š ๐‘ฆ ๐‘– ๐ด ๐‘– = ๐‘ฝ ๐’Š ๐šฒ ๐’Š ๐‘ฝ ๐’Š ๐‘ป +๐‘ฝ๐šฒ ๐• ๐“ ๐šฒ ๐’Š โ‰ฝ๐ŸŽ, ๐‘ฝ ๐’Š โˆˆ ๐‘ฝ ๐‘บ๐‘ซ๐‘ซ , ๐šฒโ‰ฝ๐ŸŽ ๐‘ท๐‘บ๐‘ซ=๐‘ท๐‘บ ๐‘ซ โˆ— ๐‘ซ๐‘ซ+1CG ๐‘ซ ๐‘ซ โˆ— ๐‘ซ๐‘ซ

16 Method 2: Column Generation (3/6)
Suggestion 1: Take the eigenvector corresponding to the most negative eigenvalue Idea: Add an atom ๐‘ฃ that satisfies ๐‘ฃ ๐‘‡ ๐‘‹๐‘ฃ<0. How to pick such a ๐’—? Suggestion 2: Take ๐‘ฃ with three nonzero elements corresponding to ยฑ1. โ€ฆ

17 Method 2: Column Generation (4/6)
Five iterations of column generation for ๐ผ+๐‘ฅ๐ด+๐‘ฆ๐ต, ๐ด,๐ต fixed 10ร—10, generated randomly ๐‘ฆ ๐‘ฅ Column generation method: adds atoms to the initial cones Cholesky change of basis method: โ€œlinearly transformsโ€ existing atoms ๐‘ฃ ๐‘– โ†’ ๐‘ˆ ๐‘‡ ๐‘ฃ ๐‘– , where ๐‘ˆ=๐‘โ„Ž๐‘œ๐‘™( ๐‘‹ โˆ— )

18 Method 2: Column Generation (5/6)
Example 1: stability number of the Petersen graph Petersen Graph Upper bound on the stability number through SDP: min ๐œ† s.t. ๐œ† ๐ผ+๐ด โˆ’๐ฝโˆ’Nโ‰ฝ0,๐‘โ‰ฅ0 Apply Column Generation technique to this SDP

19 Method 2: Column Generation (6/6)
Example 2: minimizing a degree-4 polynomial ๐’=๐Ÿ๐Ÿ“ ๐’=๐Ÿ๐ŸŽ ๐’=๐Ÿ๐Ÿ“ ๐’=๐Ÿ‘๐ŸŽ ๐’=๐Ÿ’๐ŸŽ bd t(s) DSOS -10.96 0.38 -18.01 0.74 -26.45 15.51 -36.52 7.88 -62.30 10.68 SDSOS -10.43 0.53 -17.33 1.06 -25.79 8.72 -36.04 5.65 -61.25 18.66 ๐ท๐‘†๐‘‚ ๐‘† ๐‘˜ -5.57 31.19 -9.02 471.39 -20.08 600 -32.28 -35.14 SOS -3.26 5.60 -3.58 82.22 -3.71 NA ๐’=๐Ÿ๐Ÿ“ ๐’=๐Ÿ๐ŸŽ ๐’=๐Ÿ๐Ÿ“ ๐’=๐Ÿ‘๐ŸŽ ๐’=๐Ÿ’๐ŸŽ bd t(s) ๐ท๐‘†๐‘‚ ๐‘† ๐‘˜ -6.20 10.96 -12.38 70.70 -20.08 508.63 NA 1SDSOS -8.97 14.39 -15.29 82.30 -23.14 538.54

20 Method 3: r-s/dsos hierarchy (1/3)
A polynomial ๐‘ is r-dsos if ๐‘ ๐‘ฅ ๐‘– ๐‘ฅ ๐‘– 2 ๐‘Ÿ is dsos. A polynomial ๐‘ is r-sdsos if ๐‘ ๐‘ฅ ๐‘– ๐‘ฅ ๐‘– 2 ๐‘Ÿ is sdsos. Defines a hierarchy based on ๐‘Ÿ. Proof of positivity using LP. Theorem [Ahmadi, Majumdar] Any even positive definite form p is r-dsos for some r. Proof: Follows from a result by Polya.

21 Method 3: r-s/dsos hierarchy (2/3)
Example: certifying stability of a switched linear system ๐‘ฅ ๐‘˜+1 = ๐ด ๐œŽ ๐‘˜ ๐‘ฅ ๐‘˜ where ๐ด ๐œŽ ๐‘˜ โˆˆ{ ๐ด 1 ,โ€ฆ, ๐ด ๐‘š } Recall: Theorem 2 [Parrilo, Jadbabaie]: ๐œŒ ๐ด 1 ,โ€ฆ, ๐ด ๐‘š <1 โ‡” โˆƒ a pd polynomial Lyapunov function ๐‘‰(๐‘ฅ) such that ๐‘‰ ๐‘ฅ โˆ’๐‘‰ ๐ด ๐‘– ๐‘ฅ >0, โˆ€๐‘ฅโ‰ 0. Theorem 1: A switched linear system is stable if and only if ๐œŒ ๐ด 1 โ€ฆ, ๐ด ๐‘š <1.

22 Method 3: r-s/dsos hierarchy (3/3)
Theorem: For nonnegative A 1 ,โ€ฆ, A m , ๐œŒ ๐ด 1 ,โ€ฆ, ๐ด ๐‘š <1โ‡” โˆƒ ๐‘Ÿโˆˆ โ„• and a polynomial Lyapunov function ๐‘‰(๐‘ฅ) such that ๐‘‰ ๐‘ฅ r-dsos and ๐‘‰ ๐‘ฅ . 2 โˆ’๐‘‰ ๐ด ๐‘– ๐‘ฅ r-dsos. Proof: โ‡ โ‹† โ‡’ ๐‘‰ ๐‘ฅ โ‰ฅ0 and ๐‘‰ ๐‘ฅ โˆ’๐‘‰ ๐ด ๐‘– ๐‘ฅ โ‰ฅ0 for any ๐‘ฅโ‰ฅ0. Combined to ๐ด ๐‘– โ‰ฅ0, this implies that ๐‘ฅ ๐‘˜+1 = ๐ด ๐œŽ(๐‘˜) ๐‘ฅ ๐‘˜ is stable for ๐‘ฅ 0 โ‰ฅ0. This can be extended to any ๐‘ฅ 0 by noting that ๐‘ฅ 0 = ๐‘ฅ 0 + โˆ’ ๐‘ฅ 0 โˆ’ , ๐‘ฅ 0 + , ๐‘ฅ 0 โˆ’ โ‰ฅ0. (โ‡’) From Theorem 2, and using Polyaโ€™s result as ๐‘‰(๐‘ฅ . 2 ) and ๐‘‰ ๐‘ฅ . 2 โˆ’๐‘‰ ๐ด ๐‘– ๐‘ฅ are even forms. (โ‹†)

23 Cholesky change of basis
Main messages Can construct iterative inner approximations of the cone of nonnegative polynomials using LPs and SOCPs. Presented three methods: Cholesky change of basis Column Generation r-s/dsos hierarchies Initialization Initialize with dsos/sdsos polynomials (or dd/sdd matrices) Method Rotate existing โ€œatomsโ€ of the cone of dsos/sdsos polynomials Add new atoms to the extreme rays of the cone of dsos/sdsos polynomials Use multipliers to certify nonnegativity of more polynomials. Size of the LP/SOCPs obtained Does not grow (but possibly denser) Grows slowly Grows quickly Objective taken into consideration Yes No Can beat the SOS bound

24 Thank you for listening
Questions? Want to learn more?


Download ppt "Amir Ali Ahmadi (Princeton University)"

Similar presentations


Ads by Google