Download presentation
Presentation is loading. Please wait.
Published byGrant Hancock Modified over 6 years ago
1
Heat load at the ILC positron target and collimator system
O. S. Adeyemi1, V. Kovalenko1, G. Moortgat-Pick1;2 L. Malysheva1, S. Riemann2, F. Staufenbiel2, A. Ushakov1 1University of Hamburg 2DESY - methods for positron production - temperature simulations in a photon collimator system - temperature simulations in the ILC positron target region - conclusion F.Staufenbiel / / 2.LC Forum
2
what we want to have ! 2*1010 e+ /bunch at IP
polarised positron production what we want to have ! 2*1010 e+ /bunch at IP 2625 bunch /train (0.97ms) 5 train /s photon source e+ polarisation possible conventional source no e+ polarisation! F.Staufenbiel / / 2.LC Forum
3
what we want to have ! 2*1010 e+ /bunch at IP
polarised positron production what we want to have ! 2*1010 e+ /bunch at IP 2625 bunch /train (0.97ms) 5 train /s F.Staufenbiel / / 2.LC Forum
4
collimator polarised positron production Pe+ Yield [e+/e-]
no collimator 27 % 4.4 (100%) 2 mm 35 % 4.0 (91%) 1.4 mm 47 % 3.2 (73%) 1.0 mm 60 % 2.2 (50%) F.Staufenbiel / / 2.LC Forum
5
250 GeV e- modelling the ILC-target unit
2*1010 e- / bunch = 3.2 nC / bunch 2625 bunch / train (0.97ms) = MHz repetition rate 5 train / s -> 4.6*1015 photon / train Titan target for polarised positron production r ~ 14.4 MeV e+ 250 GeV e- ~ 28.8 MeV photon beam distribution of heat load !! helical undulator r = 1 m vrim = 100 m/s ( 955 rpm = 15.9Hz ) F.Staufenbiel / / 2.LC Forum
6
modelling the ILC-target unit
flux concentrator beam pipe vacuum seal bearing motor chamber ~ 28.8 MeV photon beam d1 = 1.0 cm , l1 = 5.0 cm d2 = 5.0 cm , l2 = 3.0 cm d3 = 8.0 cm , l3 = 12.5 cm F.Staufenbiel / / 2.LC Forum
7
~ C W this is to much !! TW = 1800 K / train D Q m cv
flux concentrator beam pipe vacuum seal bearing motor chamber collimator ~ 28.8 MeV photon beam r = 0.1 cm -> _____ K / train 14 000 ??? this is to much !! F.Staufenbiel / / 2.LC Forum
8
but this is still to much !!
C Ti W modelling the collimator r = 0.1 cm D TTi K / train ~ D TW K / train D TC K / train but this is still to much !! F.Staufenbiel / / 2.LC Forum
9
C Ti Fe W C Ti W C Ti Fe W modelling the collimator r = 0.1 cm
z = 1.2 m D TTi K / train ~ D TFe K / train D TW K / train D TC K / train -> 40 K / train -> 20 K / train D TW K / train ~ F.Staufenbiel / / 2.LC Forum
10
C Ti modelling the collimator r = 0.1 cm z = 1.2 m D TC 500 K / train
D TTi K / train ~ D TFe K / train D TW K / train D TC K / train -> 200 K / train z = 4.0 m -> 40 K / train -> 20 K / train F.Staufenbiel / / 2.LC Forum
11
C Ti Fe W modelling the collimator l = r – r0 . lC A DT QC = l . 300K
r = 0.1 cm z = 1.2 m D TTi K / train ~ D TFe K / train D TW K / train D TC K / train -> 200 K / train -> 40 K / train -> 20 K / train QC = lC A DT l . l : heat conduction coefficient [W/m/K] Azyl : mean girthed area of the collimator [m2] l : heat conduction path length [m] DT : difference in temperature [K] Q : heat current . F.Staufenbiel / / 2.LC Forum
12
lC 2p ( r-r0 ) z DT = ln( r / r0 ) modelling the collimator . .
z = 1.0 cm r = 0.1 cm QC = lC A DT l . lC 2p ( r-r0 ) z DT ln( r / r0 ) zyl. = l : heat conduction coefficient [W/m/K] Azyl : mean girthed area of the collimator [m2] l : heat conduction path length [m] DT : difference in temperature [K] Q : heat current . F.Staufenbiel / / 2.LC Forum
13
a b c d modelling the flux concentrator 2.0 cm m b s
d1 = 1.0 cm , l1 = 5.0 cm d2 = 5.0 cm , l2 = 3.0 cm d3 = 8.0 cm , l3 = 12.5 cm F.Staufenbiel / / 2.LC Forum
14
~ - QTi target 6 kW / train ~ 130 K / train | 2.0 cm POSITRON beam
vrim = 100 m/s -> 50 pulses hits in the same position 1.5 cm tungsten collimator for flux concentrator F.Staufenbiel / / 2.LC Forum
15
~ ~ ~ ~ - QTi target 6 kW / train - QW colli 115 kW / train -
~ 50 K / train | ~ 80 K / train | ~ 320 K / train | flux concentrator ~ 6 kW / train QTi target - ~ 115 kW / train QW colli - ~ 20 kW / train Qflux con+W - tungsten collimator for flux concentrator ~ 100 kW / train Qflux con-W - F.Staufenbiel / / 2.LC Forum
16
Conclusion C Ti Fe W C Ti C Ti W C Ti Fe W ->
- heat loads (temperatures) for different collimator designs are simulated -> transfered in manageable regions C Ti Fe W C Ti C Ti W C Ti Fe W -> - heat load in the target and flux concentrator are simulated temperature power target 80 K/train 6 kW/train flux concentrator - Wcolli 115 kW/train flux concentrator + Wcolli 50 K/train 20 kW/train Wcollimator 320 K/train 100 kW/train F.Staufenbiel / / 2.LC Forum
17
Conclusion - heat loads (temperatures) for different collimator designs are simulated -> transfered in manageable regions - heat load in the target and flux concentrator are simulated temperature power target 80 K/train 6 kW/train flux concentrator - Wcolli 115 kW/train flux concentrator + Wcolli 50 K/train 20 kW/train Wcollimator 320 K/train 100 kW/train - what is now to do ? -> heat evolution studies in the single components + induced mechanical stress due to heat evolution facilitate by ANSYS simulation software F.Staufenbiel / / 2.LC Forum
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.