Presentation is loading. Please wait.

Presentation is loading. Please wait.

Principles & Applications Operational Amplifiers

Similar presentations


Presentation on theme: "Principles & Applications Operational Amplifiers"— Presentation transcript:

1 Principles & Applications Operational Amplifiers
Electronics Principles & Applications Sixth Edition Charles A. Schuler Chapter 9 Operational Amplifiers © Glencoe/McGraw-Hill

2 INTRODUCTION The Differential Amplifier The Operational Amplifier
Determining Gain Frequency Effects Applications Comparators

3 C C B B E E A differential amplifier driven at one input +VCC -VEE
Inverted output Noninverted output +VCC C C B B E E -VEE

4 Both outputs are active because Q1 drives Q2.
Q1 serves as an emitter-follower amplifier in this mode to drive Q2. Q2 serves as a common-base amplifier in this mode. It’s driven at its emitter. +VCC C C B B E E Q1 Q2 -VEE

5 C C B B E E A differential amplifier driven at both inputs +VCC -VEE
Common mode input signal Reduced output Reduced output +VCC C C B B E E -VEE

6 C C B B E E A differential amplifier driven at both inputs +VCC -VEE
Differential mode input signal Increased output Increased output +VCC C C B B E E -VEE

7 Differential Amplifier dc Analysis
IRE = VEE - VBE RE 9 V V 3.9 kW = = 2.13 mA VRL = IC x RL = 1.06 mA x 4.7 kW IE = IRE 2 = 1.06 mA VCC +9 V = 4.98 V VCE = VCC - VRL - VE 4.7 kW RL RL 4.7 kW = (-0.7) IC = IE = 1.06 mA C C = 4.72 V B B E E 10 kW RB RB 10 kW 3.9 kW RE VEE -9 V

8 Differential Amplifier dc Analysis (continued)
Assume b = 200 VB = VRB = IB x RB = 5.3 mA x 10 kW IB = IC b 1.06 mA 200 = VCC +9 V = 53 mV = 5.3 mA 4.7 kW RL RL 4.7 kW C C B B E E 10 kW RB RB 10 kW 3.9 kW RE VEE -9 V

9 Differential Amplifier ac Analysis
50 mV IE = 1.06 mA = 47 W (50 mV is conservative) VCC +9 V AV(CM) = RL 2 x RE AV(DIF) = RL 2 x rE 4.7 kW 2 x 3.9 kW = 4.7 kW RL RL 4.7 kW = 50 4.7 kW 2 x 47 W = C C = 0.6 B B E E 10 kW RB RB 10 kW 3.9 kW RE VEE -9 V

10 Differential Amplifier ac Analysis (continued)
CMRR = 20 x log AV(DIF) AV(CM) = 20 x log 50 0.6 = 38.4 dB VCC +9 V 4.7 kW RL RL 4.7 kW C C B B E E 10 kW RB RB 10 kW 3.9 kW RE VEE -9 V

11 * C C B B E E A current source can replace RE to decrease
the common mode gain. AV(CM) = RL 2 x RE VCC Replaces this with a very high resistance value. 4.7 kW RL RL 4.7 kW C C B B E E 10 kW RB RB 10 kW * 2 mA NOTE: Arrow shows conventional current flow.

12 A Practical Current Source
IZ = 9 V V 390 W = 10 mA IC IE = = 2 mA 5.1 V V 2.2 kW 390 W IC = IE = 2 mA 5.1 V 2.2 kW -9 V

13 The common-mode signal cannot be seen in the output.
A Demonstration of Common-mode Rejection The common-mode signal cannot be seen in the output. The amplitude of the common-mode signal is almost 30 times the amplitude of the differential signal. 6.3 V 60 Hz 212 mV 1 kHz

14 Differential Amplifier Quiz
When a diff amp is driven at one input, the number of active outputs is _____. two When a diff amp is driven at both inputs, there is high gain for a _____ signal. differential When a diff amp is driven at both inputs, there is low gain for a ______ signal. common-mode The differential gain can be found by dividing the collector load by ________. 2rE The common-mode gain can be found by dividing the collector load by ________. 2RE

15 Op amps have two inputs Inverting input Output Non-inverting input

16 Op-amp Characteristics
High CMRR High input impedance High gain Low output impedance Available as ICs Inexpensive Reliable Widely applied

17 With both inputs grounded through equal
resistors, VOUT should be zero volts. +VCC VOUT Imperfections can make VOUT non-zero. The offset null terminals can be used to zero VOUT. -VEE

18 Dt DV DV Dt Slew rate = 741 0.5 V ms The output of an op amp cannot change instantaneously.

19 VP f > fMAX fMAX = Slew Rate 2p x VP Slew-rate distortion

20 Operational Amplifier Quiz
The input stage of an op amp is a __________ amplifier. differential Op amps have two inputs: one is inverting and the other is ________. noninverting An op amp’s CMRR is a measure of its ability to reject a ________ signal. common-mode The offset null terminals can be used to zero an op amp’s __________. output The ability of an op amp output to change rapidly is given by its _________. slew rate

21 It has a high input impedance and a low output impedance.
Op-amp Follower AV(OL) = the open loop voltage gain AV(CL) = the closed loop voltage gain This is a closed-loop circuit with a voltage gain of 1. It has a high input impedance and a low output impedance. RL

22 The differential input
Op-amp Follower AV(OL) = 200,000 AV(CL) = 1 The differential input approaches zero due to the high open-loop gain. Using this model, VOUT = VIN. VDIF = 0 VOUT RL VIN

23 Op-amp Follower AV(OL) = 200,000 B = 1 AB +1 A VIN VOUT
The feedback ratio = 1 200,000 (200,000)(1) + 1 @ 1 AV(CL) = VOUT RL VIN

24 The closed-loop gain is increased by decreasing
the feedback with a voltage divider. 200,000 (200,000)(0.091) + 1 = 11 AV(CL) = RF B = R1 RF + R1 100 kW R1 10 kW 10 kW 100 kW + 10 kW = VOUT RL VIN = 0.091

25 It’s possible to develop a different model for the closed loop gain
by assuming VDIF = 0. VIN = VOUT x R1 R1 + RF RF Divide both sides by VOUT and invert: 100 kW R1 10 kW = VOUT VIN 1 + RF R1 VDIF = 0 VOUT RL VIN AV(CL) = 11

26 -VOUT -RF In this amplifier, the assumption VDIF = 0 leads
to the conclusion that the inverting op amp terminal is also at ground potential. This is called a virtual ground. We can ignore the op amp’s input current since it is so small. Thus: Virtual ground RF IR1 = IRF 10 kW 1 kW By Ohm’s Law: R1 VIN R1 = -VOUT RF VDIF = 0 VIN VOUT RL VOUT VIN = -RF R1 = -10 The minus sign designates an inverting amplifier.

27 Due to the virtual ground, the input impedance
of the inverting amplifier is equal to R1. Virtual ground RF Although op amp input currents are small, in some applications, offset error is minimized by providing equal paths for the input currents. 10 kW R1 1 kW VDIF = 0 VIN R2 = R1 || RF = 910 W This resistor reduces offset error.

28 A typical op amp has internal frequency compensation.
Output C Break frequency: fB = 2pRC 1

29 Bode Plot of a Typical Op Amp
Break frequency 120 100 80 60 Gain in dB 40 20 1 10 100 1k 10 k 100 k 1M Frequency in Hz

30 Op amps are usually operated with negative feedback
(closed loop). This increases their useful frequency range. = VOUT VIN 1 + RF R1 AV(CL) = RF = 1 + 100 kW 1 kW = 101 100 kW R1 1 kW dB Gain = 20 x log 101 = 40 dB VOUT RL VIN

31 Using the Bode plot to find closed-loop bandwidth:
120 100 Gain in dB 80 Break frequency 60 AV(CL) 40 20 1 10 100 1k 10 k 100 k 1M Frequency in Hz

32 There are two frequency limitations:
0.5 V ms 70 V ms A 741 op amp slews at A 318 op amp slews at There are two frequency limitations: Slew rate determines the large-signal bandwidth. Internal compensation sets the small-signal bandwidth.

33 The Bode plot for a fast op amp shows
increased small-signal bandwidth. 120 100 80 Gain in dB 60 40 fUNITY 20 1 10 100 1k 10 k 100 k 1M 10M Frequency in Hz

34 fUNITY can be used to find the small-signal bandwidth.
= VOUT VIN 1 + RF R1 AV(CL) = RF = 1 + 100 kW 1 kW = 101 100 kW R1 1 kW fB = fUNITY AV(CL) VOUT RL VIN 318 Op amp 10 MHz 101 = 99 kHz =

35 Op Amp Feedback Quiz The open loop gain of an op amp is reduced with __________ feedback. negative The ratio RF/R1 determines the gain of the ___________ amplifier. inverting 1 + RF/R1 determines the gain of the ___________ amplifier. noninverting Negative feedback makes the - input of the inverting circuit a ________ ground. virtual Negative feedback _________ small signal bandwidth. increases

36 Amplitude Response of RC Lag Circuit
Vout C fb = 2pRC 1 fb 10fb 100fb 1000fb f 0 dB -20 dB Vout -40 dB -60 dB

37 Phase Response of RC Lag Circuit
Vout C R -XC  = tan-1 0.1fb fb 10fb 0o f Vout -45o -90o

38 Interelectrode Capacitance and Miller Effect
The gain from base to collector makes CBC effectively larger in the input circuit. CBC CBE R CMiller CBE CMiller = AVCBC fb = 2pRCInput 1 CInput = CMiller + CBE

39 Bode Plot of an Amplifier with Two Break Frequencies
50 dB 40 dB 20 dB/decade 30 dB 20 dB 40 dB/decade 10 dB 0 dB 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz fb1 fb2

40 Multiple Lag Circuits:
Vout R1 R2 R3 C1 C2 C3 0o f Vout Phase reversal -180o Negative feedback becomes positive!

41 Op Amp Compensation Interelectrode capacitances create several break points. Negative feedback becomes positive at some frequency due to cumulative phase lags. If the gain is > 0 dB at that frequency, the amplifier is unstable. Frequency compensation reduces the gain to 0 dB or less.

42 Op Amp Compensation Quiz
Beyond fb, an RC lag circuit’s output drops at a rate of __________ per decade. 20 dB The maximum phase lag for one RC network is __________. 90o An interelectrode capacitance can be effectively much larger due to _______ effect. Miller Op amp multiple lags cause negative feedback to be ______ at some frequency. positive If an op amp has gain at the frequency where feedback is positive, it will be ______. unstable

43 RF Summing Amplifier Amplifier scaling: 1 kHz signal gain is -10
Inverted sum of three sinusoidal signals RF 5 kHz 5 kW 10 kW Summing Amplifier 3.3 kW Amplifier scaling: 1 kHz signal gain is -10 3 kHz signal gain is -3 5 kHz signal gain is -2 3 kHz 1 kW 1 kHz

44 common-mode rejection)
Difference of two sinusoidal signals (V1 = V2) RF 1 kW Subtracting Amplifier (A demonstration of common-mode rejection) 1 kW VOUT = V2 - V1 1 kW 1 kW V1 V2

45 A cascade RC low-pass filter
(A poor performer since later sections load the earlier ones.) An active low-pass filter (The op amps provide isolation and better performance.)

46 Active filter -20 Cascade RC -40 Amplitude in dB -60 10 100 Frequency in Hz

47 Active low-pass filter
with feedback VOUT C1 C2 VIN feedback At relatively low frequencies, Vout and Vin are about the same. Thus, the signal voltage across C1 is nearly zero. C1 has little effect at these frequencies.

48 Active low-pass filter
with feedback VOUT C1 C2 VIN As fIN increases and C2 loads the input, Vout drops. This increases the signal voltage across C1. This sharpens the knee. -3 dB Feedback can make a filter’s performance even better! Gain Frequency fC

49 The slope eventually reaches 24 dB/octave or 80 db/decade
Note the flat pass band and the sharp knee. Active filter using feedback (two stages) -20 -40 Amplitude in dB The slope eventually reaches 24 dB/octave or 80 db/decade for all the filters (4 RC sections). -60 10 100 Frequency in Hz

50 Active high-pass filter
VOUT VIN feedback -3 dB Gain fC Frequency

51 Active band-pass filter
VIN VOUT Active band-pass filter (multiple feedback) -3 dB Gain Frequency Bandwidth

52 Active band-stop filter
VOUT VIN Active band-stop filter (multiple feedback) -3 dB Gain Frequency Stopband

53 0 V 56.6 mV Active rectifier 40 mV 0 V mV

54 Integrator C V Slope = s R VOUT VIN Slope = -VIN x 1 RC

55 Comparator with a 1 Volt Reference
+VSAT 1 V 0 V -VSAT VOUT VIN 1 V

56 Comparator with a Noisy Input Signal
+VSAT 1 V 0 V -VSAT VOUT VIN 1 V

57 Schmitt Trigger with a Noisy Input Signal
+VSAT UTP LTP -VSAT Trip points: R1 + RF R1 VSAT x VOUT VIN RF R1 Hysteresis = UTP - LTP

58 VOUT is LOW (0 V) when VIN is between 1 V and 3 V.
Window Comparator 4.7 kW R1 311 VOUT VUL 3 V R2 4.7 kW VIN 311 VLL VOUT is LOW (0 V) when VIN is between 1 V and 3 V. 1 V

59 require pull-up resistors in applications of this type.
+5 V Window Comparator 311 VOUT VUL 3 V VIN 311 Many comparator ICs require pull-up resistors in applications of this type. VLL 1 V

60 VOUT is TTL logic compatible.
Window Comparator 4.7 kW R1 311 VOUT VUL 3 V R2 4.7 kW VIN 311 VLL VOUT is TTL logic compatible. 1 V

61 Op Amp Applications Quiz
A summing amp with different gains for the inputs uses _________. scaling Frequency selective circuits using op amps are called _________ filters. active An op amp integrator uses a _________ as the feedback element. capacitor A Schmitt trigger is a comparator with __________ feedback. positive A window comparator output is active when the input is ______ the reference points. between

62 REVIEW The Differential Amplifier The Operational Amplifier
Determining Gain Frequency Effects Applications Comparators


Download ppt "Principles & Applications Operational Amplifiers"

Similar presentations


Ads by Google