Presentation is loading. Please wait.

Presentation is loading. Please wait.

SEASR Overview Loretta Auvil, Boris Capitanu

Similar presentations


Presentation on theme: "SEASR Overview Loretta Auvil, Boris Capitanu"— Presentation transcript:

1 SEASR Overview Loretta Auvil, Boris Capitanu
University of Illinois at Urbana-Champaign

2 Overview of Course Monday Tuesday Wednesday Thursday Friday MORNING
SEASR Overview Overview of Course SEASR Overview and Motivation Example SEASR Analytics and Applications SEASR Architecture Introduction of Meandre SEASR Community Hub Attendee Project Plan Text Analytics Dunning Loglikelihood Comparison Entity Extraction Spell Checking Text Analytics: Monk Attendee Project Work SEASR Analytics for Zotero Demonstrations of SEASR Analytics Use of SEASR services with Zotero and VUE Creating Zotero Flows Configuration Mechanism Web Service Components Zotero-enabled Flows VUE-enabled Flows Visualizations, Mashups & Dashboards Visualization SEASR as a service Other services Text App: Correlation & Ngram Viewer Text App: ProseVis SEASR Apps & Future Work Audio Analytics: NEMA Text Analytics: HTRC SEASR Central Future Meandre Features Future Meandre Workbench Features Attendee Plan Presentations AFTERNOON Meandre Workbench, Installation & NLP Overview Overview of Workbench Overview of Repositories Designing and Constructing Flows Installation NLP Overview & Examples More Text Analytics Emotion Tracking Concept Tracking Topic Modeling Modify project plan Identify data set Identify analysis Tools & Deployment Community Collaboration Tools Architecture Details Overview of Development Tools Overview of ZigZag Parallelization Example ZigZag flows with Zotero, VUE and Fedora

3 Outline Overview of Course SEASR Overview and Motivation
Example SEASR Analytics and Applications Attendee Plan SEASR Architecture Introduction of Meandre SEASR Community Hub Hands-On

4 SEASR Overview

5 SEASR Project This project will focus on developing, integrating,
deploying, and sustaining a set of reusable and expandable software components and a supporting framework, to benefit a broad set of data mining applications for scholars in humanities.

6 Key Goals Support the development of a state-of-the-art software environment for unstructured data management and analysis of digital libraries, repositories and archives, as well as educational platforms that are expected to contribute to many of the humanities breakthroughs of the 21st century. Support the continued development, expansion, and maintenance of end-to-end software system – user interfaces, workflow engines, data management, analysis and visualization tools, collaborative tools, and other software integrated into a complete environment SEASR – to bring the full power of data analytics to the scholars.  Support education and training for use of this software environment for analysis through workshops to promote its usage among scholars.

7 The SEASR Picture

8 Workshop Objective The objective of the workshop is:
To explain and demonstrate the utility of SEASR for digital humanities, and to bring you to a point where you could deploy, contribute and utilize the SEASR environment.

9 Workshop Goals The goals of the workshop are:
LEARN: Provide a detailed understanding of the SEASR framework LEARN: Provide a foundation and examples for participant teams to use SEASR in a study or inquiry ADOPT: Share participant generated research plans to utilize SEASR INSTALL: Provide detailed instructions on how to install, build components, integrate existing applications, and maintain the SEASR environment SUPPORT: Develop plans for resolution of issues raised by the user community in utilization of SEASR SUSTAIN: Develop a plan for community driven future development and dissemination of SEASR

10 SEASR @ Work – Tag Cloud Count tokens Filter options supported
Stem words

11 SEASR @ Work – Ngram Tag Cloud
Count multiple words Filter options Stem

12 SEASR @ Work – Dunning Loglikelihood
Feature comparison of tokens Specify an analysis document/collection Specify a reference document/collection Perform statistics comparison using Dunning Loglikelihood Example showing over-represented Analysis Set: The Project Gutenberg EBook of A Tale of Two Cities, by Charles Dickens Reference Set: The Project Gutenberg EBook of Great Expectations, by Charles Dickens

13 SEASR @ Work – HITS Summarizer

14 SEASR @ Work – Entity Mash-up
Entity Extraction with OpenNLP or Stanford NER Locations viewed on Google Map Dates viewed on Simile Timeline

15 SEASR @ Work – Entities To Network
Identify entities Define relationships between entities within same sentence

16 SEASR @ Work – Topic Modeling
Given: Set of documents Find: To reveal the semantic content in large collection of documents Usage: Mallet Topic Modeling tools Output: Shows the percentage of relevance for each document in each cluster Shows the key words and their counts for each topic

17 SEASR @ Work – Concept Mapping
Goal is to have this type of Visualization to track emotions across a text document (Leveraging flare.prefuse.org)

18 SEASR @ Work – Audio Analysis
NEMA: Executes a SEASR flow for each run Loads audio data Extracts features for every 10 sec moving window of audio Loads and applies the models Sends results back to the WebUI NESTER: Annotation of Audio via Spectral Analysis

19 SEASR @ Work – MONK Executes flows for each analysis requested
Predictive modeling using Naïve Bayes Predictive modeling using Support Vector Machines (SVM) Feature comparisons

20 SEASR @ Work – Zotero Plugin to Firefox Zotero manages the collection
Launch SEASR Analytics Citation Analysis uses the JUNG network importance algorithms to rank the authors in the citation network that is exported as RDF data from Zotero to SEASR Zotero Export to Fedora through SEASR Saves results from SEASR Analytics to a Collection Launch MONK Processing MONK DB Ingestion Workflow

21 TEI components for SEASR by Brown U

22 Attendee Project Plan Explore tool usage during learning exercises
Participate in discussion Design a project plan to use SEASR this week for some analysis Modify and develop the project plan over the week Present and discuss project plan and results on Friday

23 Attendee Project Plan (2)
Study/Project Title Team Members and their Affiliation Procedural Outline of Study/Project Research Question/Purpose of Study Data Sources Analysis Tools Activity Timeline or Milestones Report or Project Outcome(s) Ideas on what your team needs from SEASR staff to help you achieve your goal.

24 SEASR Architecture

25 Meandre Data-Intensive Flows
SEASR Architecture Visualizations User Interfaces Apps Plugins Web Apps Services Meandre Workbench Repositories Data Analysis Components Flows Meandre Data-Intensive Flows Components Developer Tools Data Analytics Visualization Component Repository Component Discovery Meandre Infrastructure Java Virtual Machine

26 Data Driven Models

27 SEASR: Reach + Relevance + Reuse + Repeatability
SEASR emphasizes flexibility, scalability, modularity, provides community hub and access to heterogeneous data and computational systems Semantic driven environment for SOA interoperability Encourages sharing and participation for building communities Modular construction allows flows to be modified and configured to encourage reusability within and across domains Enables a mashup and integration of tools Data-intensive flows can be executed on a simple desktop or a large cluster(s) without modification Computation can be created for distributed execution on servers where the content lives User accessibility to control trust and compliance with required copyright license of content Relies on standardized Resource Description Framework (RDF) to define components and flow

28 Enables Humanist To ask key questions:
What recurrent patterns would be of interest to literary scholars Which patterns are characteristic of the English language and which are characteristic of a particular author, work, topic, or time? Patterns based on words can be extracted from literary bodies; however, can patterns be extracted based on grammar or plot constructs? When are correlated patterns meaningful? Can they be organized based on such criteria? How can an author’s intentionality be assessed given an extracted pattern?

29 SEASR Enables Scholarly Research
Discovery What hypothesis or rules can be generated by the “features” of the corpus? What “features” or language of the corpus best describes the corpus? What are the “similarities” between elements, documents, or corpuses to each other.

30 Meandre: Infrastructure
SEASR/Meandre Infrastructure: Dataflow execution paradigm Semantic-web driven Web Oriented Supports publishing services Modular components Encapsulation and execution mechanism Promotes reuse, sharing, and collaboration

31 Meandre: Semantic Web Concepts
Relies on the usage of the resource description framework (RDF) which uses simple notation to express graph relations written usually as XML to provide a set of conventions and common means to exchange information Provides a common framework to share and reuse data across application, enterprise, and community boundaries Focuses on common formats for integration and combination of data drawn from diverse sources Pays special attention to the language used for recording how the data relates to real world objects Allows navigation to sets of data resources that are semantically connected.

32 Meandre: Metadata Ontologies
Meandre's metadata relies on three ontologies: The RDF ontology serves as a base for defining Meandre descriptors The Dublin Core Elements ontology provides basic publishing and descriptive capabilities in the description of Meandre descriptors The Meandre ontology describes a set of relationships that model valid components, as understood by the Meandre execution engine architecture

33 Meandre: Components in RDF
@prefix meandre: < . @prefix xsd: < . @prefix dc: < . @prefix rdfs: < . @prefix rdf: < . @prefix : <#> . < meandre:name "Limited iterations"^^xsd:string ; rdf:type meandre:executable_component ; dc:creator "Xavier Llora"^^xsd:string ; dc:date " T00:32:35"^^xsd:date ; dc:description "Allows only a limited number of iterations"^^xsd:string ; dc:format "java/class"^^xsd:string ; dc:rights "University of Illinois/NCSA Open Source License"^^xsd:string ; meandre:execution_context < , < , < , < , < ; ... Existing Standards

34 Meandre: Components Types
Components are the basic building block of any computational task. There are two kinds of Meandre components: Executable components Perform computational tasks that require no human interactions during runtime Processes are initialized during flow startup and are fired when in accordance to the policies defined for it. Control components Used to pause dataflow during user interaction cycles WebUI may be a HTML Form, Applet, or Other user interface

35 Meandre: Dataflow Example
Dataflow Addition Example Logical Operation ‘+’ Requires two inputs Produces one output When two inputs are available Logical operation can be preformed Sum is output When output is produced Reset internal values Wait for two new input values to become available Value1 Value2 Sum Logical Operation Output Inputs

36 Meandre: Create, Publish, & Share
“Components” and “Flows” have RDF descriptors Easily shared, fosters sharing, & reuse Allow machines to read and interpret Independent of the implementations Combine different implementation & platforms Components: Java, Python, Lisp, Web Services Execution: On a Laptop or a High Performance Cluster A “Location” is RDF descriptor of one to many components, one to many flows, and their implementations

37 Meandre: Repository & Locations
Each location represents a set components/flows Users can Combine different locations together Create components Assemble flows Share components and flows Repositories Help Administrate complex environments Organize components and flows

38 Meandre: Metadata Properties
Components and Flows share properties such as component name, creator, creation date, description, tags, and rights. Components specific metadata to describe the components' behavior, it’s location, type of implementation, firing policy, runnable, format, resource location, and execution context Flow specific metadata describes the directed graph of components, components instances, connectors, connector instance data port source, connector, instance data port target, connector instance source, connector instance target, instance name

39 Meandre: Programming Paradigm
The programming paradigm creates complex tasks by linking together a bunch of specialized components. Meandre's publishing mechanism allows components developed by third parties to be assembled in a new flow. There are two ways to develop flows : Meandre’s Workbench visual programming tool Meandre’s ZigZag scripting language

40 Meandre: Workbench Existing Flow
Web-based UI Components and flows are retrieved from server Additional locations of components and flows can be added to server Create flow using a graphical drag and drop interface Change property values Execute the flow Components Flows Locations

41 Meandre: ZigZag Script Language
ZigZag is a simple language for describing data- intensive flows Modeled on Python for simplicity. ZigZag is declarative language for expressing the directed graphs that describe flows. Command-line tools allow ZigZag files to compile and execute. A compiler is provided to transform a ZigZag program (.zz) into Meandre archive unit (.mau). Mau(s) can then be executed by a Meandre engine.

42 Community Hub Explore existing flows to find others of interest
Keyword Cloud Connections Find related flows Execute flow Comments

43 Community Hub: Keyword Cloud Design

44 Community Hub

45 Keyword Cloud Implementation
Keyword Cloud functionality is currently implemented as a wordpress plugin

46 Detail View of Application
Detail View with Related Flows

47 Community Hub: Connections Design

48 Demonstration Community Hub NEMA's Son of Blinkie
Keyword Cloud Functionality Tag Cloud Viewer Ngram Tag Cloud Viewer HITS Summarizer Date Entity to Simile Timeline Location Entity to Google Map Google Search to Tag Cloud Viewer Entity to Protovis Network Graph Readability NEMA's Son of Blinkie

49 Learning Exercises: Community Hub
Explore Community Hub's Keyword Cloud Functionality Open browser and go to Click on "Keyword Cloud” (top left side, under Download) Click on "visualization" to see all the existing applications that have a tag of "visualization" Click on "cluster" to see all the existing applications that have a tag of "visualization" and ”tag cloud” Click on the delete button to remove ”tag cloud" from the selection Click on the "Tag Cloud Viewer" for more detail information about this application

50 Learning Exercises: Tag Cloud Viewer
Perform analysis using "Tag Cloud Viewer" on a hard coded web page Use Community Hub to open the "Tag Cloud Viewer" page or open browser and go to cloud-viewer/ Click on the "Execute" button to launch the creation of a tag cloud view for "Emma" by Jane Austen retrieved from Project Gutenberg

51 Learning Exercises: Tag Cloud Viewer
Perform analysis using Tag Cloud Viewer" on a webpage of your choice Use Community Hub to open the "Tag Cloud Viewer" page or open browser and go to cloud-viewer/ Find a web url that you are interested in analyzing Click on the "Custom Execute" button to launch the application where you can copy and paste a web url that you are interested in analyzing

52 Learning Exercises: Google Search
Perform analysis using "Google Search to Tag Cloud Viewer" on a topic of your choice Use Community Hub to open the "Google Search to Tag Cloud Viewer" page or open browser and go to flows/google-search-to-tag-cloud-viewer/ Click on the "Custom Execute" button to launch the application where you can type your Google query for analysis

53 Attendee Project Plan Identify Research Question Study/Project Title
Team Members and their Affiliation Procedural Outline of Study/Project Research Question/Purpose of Study Data Sources Analysis Tools Activity Timeline or Milestones Report or Project Outcome(s) Ideas on what your team needs from SEASR staff to help you achieve your goal. Identify Research Question

54 Discussion Questions Which kinds of data repositories do you utilize in your scholarly research? What analytical tools or applications do you utilize with these repositories?


Download ppt "SEASR Overview Loretta Auvil, Boris Capitanu"

Similar presentations


Ads by Google