Download presentation
Presentation is loading. Please wait.
Published byDiane White Modified over 6 years ago
1
Levon Kazaryan, Gregory Kantorovich Higher School of Economics
Taking into account the rate of convergence in CLT under Risk evaluation on financial markets Levon Kazaryan, Gregory Kantorovich Higher School of Economics Higher School of Economics Moscow, 2015
2
Introduction In economics theory and on practice often are used models with normal distribution. But empirical researches show, that using of normal distribution on practice do not take in consideration arise of fat tails. Hence, there is alternative for models based on normal distributions such as: Stable distributions Clark’s subordination model Mixture of distributions’ model General Levy processes Variable and stochastic volatility Microstructural models Various non-normal distribution models Higher School of Economics , Moscow, 2015 2 / 15
3
Introduction Consider Sj>0 index prices over n time intervals. Define Xj = 𝑗=1 𝑛 ln( 𝑆 𝑗 𝑆 𝑗−1 ) Logarithm of the index return over the whole period Yn = X1 + … + Xn From CLT with assumption that n is large, and a conclusion that cumulative distribution function (c.d.f.) Fn (t) of Yn coincides with c.d.f. Φ(t) of a normally distributed random variable. Decomposing Fn(t) = [Fn(t) – Φ(t)] + Φ(t) For example one of important cases is probability of six-standard-deviations loses on US stock market. CLT promised us Φ(-6σ) ~ But empirical research of historical stock returns shows that: Pr{ Y253 < -6σ } = F253 (-6σ) ~ 10-2= 1% So fatness ratio between CLT result and empirical research is really huge. Investors face six-standard-deviations loses 10 million times frequently. Higher School of Economics , Moscow, 2015 3 / 15
4
Data Country Index Australia S&P/ASX 200 Austria ATX Argentina Merval
Belgium BEL 20 Brazil Bovespa United Kingdom FTSE 100 Germany DAX Hong Kong Hang Seng Denmark OMXC20 Israel TA 25 India BSE Sensex Indonesia IDX Composite Country Index Ireland ISEQ Overall Spain IBEX 35 Canada S&P/TSX Malaysia KLCI Mexico IPC Netherlands AEX Russia РТС United States S&P 500 Turkey BIST 100 France CAC 40 Switzerland SMI Japan Nikkei 225 Higher School of Economics , Moscow, 2015 4/ 15
5
Methods and methodology
Innovative method of construction G- bounds by Y. Gabovich Hypotheses of weak form efficiency by E. Fama. Construction of G bounds for log returns of stock market indexes The rate of convergence Correlation Runs test Random walk test Test of Weak-form efficiency Methods Higher School of Economics , Moscow, 2015 5 / 18
6
Hypothesis H0: G bounds evaluate the risk of large losses on the stock markets more accurately than the normal distribution. H1: Indexes of observable countries are efficiency in the weak form. H2: There is a negative relationship Between the Weak-form efficiency of the stock market and the risk of large losses on it. Higher School of Economics , Moscow, 2015 6 / 15
7
Construction of G(n,t) tail estimates
G1-bounds (G1,n(t)) - combination of Berry-Esseen’s -type estimates with Chebyshev-type inequality Berry-Esseen’ s-type inequality: For c.d.f. Fn (t) of Yn there exists such normal Φn (t) and non-dependent on n constant C that for all t: 𝑠𝑢𝑝 𝑡 Fn t – Φ t ≤ 𝐶𝜌 𝑛 , so we can estimate Fn(t) as : 𝐹 𝑛 𝑡 = 𝐹 𝑛 𝑡 − 𝛷 𝑛 𝑡 + 𝛷 𝑛 t ≤ 𝐶𝜌 𝑛 + 𝛷 𝑛 t Chebyshev-type one-sided inequalities for random variables: F n t ≤ 1 1+ t 2 G2-bounds (G2,n(t)) - combination of G1-bounds with Nagaev-Nikulin-type inequality Nagaev-Nikulin-type inequalities for sums of independent random variables: | 𝐹 𝑛 𝑡 −Ф(𝑡)|≤ 𝐶(𝑡)𝜌 𝑛 (1+ |𝑡| 3 ) Higher School of Economics , Moscow, 2015 7 / 15
8
Information efficiency analysis
Algorithm of testing Weak-form efficiency of stock market Results of testing Step 1. Kolmogorov–Smirnov test Step 2. Jarque–Bera test Step 3. Runs test Step 4. Random walk test Country Runs test Random Walk Test Weak-form efficiency Australia Yes Austria No Argentina Belgium Brazil United Kingdom Germany Hong Kong Denmark Israel India Indonesia Ireland Spain Canada Malaysia Mexico Netherlands Russia United States Turkey France Switzerland Japan Runs test Random walk test Weak-form efficiency of stock market Higher School of Economics , Moscow, 2015 8/ 15
9
Results of construction G bounds
G bounds of S&P500 1*σ 2*σ 3*σ 4*σ 5*σ 6*σ 7*σ 8*σ 9*σ 10*σ H(t) 0.0951 0.0259 0.0096 0.0047 0.0023 0.0011 0.0007 0.0003 0.0001 Φ(t) 0.1587 0.0228 0.0013 0.0000 Ψ(Φ,t) 0.5991 1.1380 7.4015 1.47E+02 8.10E+03 1.16E+06 5.70E+08 5.13E+11 1.21E+15 1.20E+19 ΔKS 0.0406 CH(t) 0.5000 0.2000 0.1000 0.0588 0.0385 0.0270 0.0200 0.0154 0.0122 0.0099 KS 0.1993 0.0634 0.0419 0.0407 G1(t) Ψ(G1,t) 0.4770 0.4090 0.2294 0.1144 0.0572 0.0280 0.0180 0.0079 0.0034 0.0022 NC(t) 9.0590 7.2512 6.0329 5.7370 NN(t) 1.4518 0.3165 0.0988 0.0327 0.0121 0.0052 0.0025 0.0008 0.0006 G2(t) Ψ(G2,t) 0.1421 0.1925 0.2205 0.2909 0.2398 0.1782 0.1620 Higher School of Economics , Moscow, 2015 9 / 15
10
Results of construction G bounds
G bounds of MICEX 1*σ 2*σ 3*σ 4*σ 5*σ 6*σ 7*σ 8*σ 9*σ 10*σ H(t) 0,0018 Φ(t) 0,0115 0,0799 1,4015 5,75E+01 6,35E+03 1,85E+06 1,42E+09 2,93E+12 1,61E+16 2,39E+20 Ψ(Φ,t) 1,59E-01 2,28E-02 1,30E-03 3,17E-05 2,87E-07 9,87E-10 1,28E-12 6,22E-16 1,13E-19 7,62E-24 ΔKS 0,0139 CH(t) 0.5000 0.2000 0.1000 0.0588 0.0385 0.0270 0.0200 0.0154 0.0122 0.0099 KS 0,1726 0,0367 0,0152 0,0140 G1(t) Ψ(G1,t) 0,0106 0,0496 0,1195 0,1303 0,1306 NC(t) 29,1170 29,117 22,1853 16,0240 11,8046 9,0590 7,2512 6,0329 5,7370 NN(t) 16,4237 3,7174 1,2279 0,4113 0,1520 0,0650 0,0315 0,0167 0,0097 0,0071 G2(t) Ψ(G2,t) 0,1886 0,2572 Higher School of Economics , Moscow, 2015 10 / 15
11
Analysis of fatness of left tail
Fatness of left tail S&P500 Fatness 1*σ 2*σ 3*σ 4*σ 5*σ 6*σ 7*σ 8*σ 9*σ 10*σ Ψ(Φ,t) 5.7E+08 5.13E+11 1.21E+15 1.20E+19 Ψ(G1,t) 0.2294 Ψ(G2,t) Fatness of left tail MICEX Fatness 1*σ 2*σ 3*σ 4*σ 5*σ 6*σ 7*σ 8*σ 9*σ 10*σ Ψ(Φ,t) 1.42E+09 2.93E+12 1.61E+16 2.39E+20 Ψ(G1,t) Ψ(G2,t) Higher School of Economics , Moscow, 2015 11 / 15
12
Results of logit model Results of logit model testing Coef. Std. Err.
z P>|z| [95% Conf. Interval] -1*σ X 0,68 0,495 const -0, 1,929778 -0,49 0,621 -4,736332 2,828257 -2*σ 101228,70 ,00 0,08 0,93 ,00 ,0 0,22 1,44 0,15 0,88 -2,60 3,04 -3*σ ,40 276671,00 -0,82 0,41 ,60 316011,70 1,68 1,71 0,98 0,33 -1,68 5,03 -4*σ -14209,27 12722,60 -1,12 0,26 -39145,11 10726,58 1,60 1,23 1,30 0,19 -0,81 4,02 -5*σ -440,3902 223,7824 -1,97 0,049 -878,9956 -1,784768 2,06 0,99 2,08 0,04 0,12 4,01 -6*σ -3,02 1,39 -2,17 0,03 -5,75 -0,30 2,10 2,26 0,02 0,28 3,92 -7*σ 0,00 -1,04 0,30 -0,01 0,79 0,61 1,31 -0,40 1,98 -8*σ -0,60 0,55 0,51 0,50 1,00 0,32 -0,48 1,49 -9*σ -1,02 0,31 0,63 1,26 0,21 -0,35 1,61 -10*σ -0,63 0,53 0,46 -0,44 1,37 Higher School of Economics , Moscow, 2015 12 / 15
13
Conclusion Confirmation of H0 hypothesis
H1 hypothesis was partially confirmed. Confirmation of H2 hypothesis Constructed logit model let us find a negative correlation between deviation of observed indexes log returns and weak form efficiency For log returns of observed effective stock markets in the weak form fatness ratio is less than for ineffective stock markets This area of research carries great potential for further research Higher School of Economics , Moscow, 2015 13 / 15
14
Conclusion 14 / 15
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.