Presentation is loading. Please wait.

Presentation is loading. Please wait.

The theory of diffraction

Similar presentations


Presentation on theme: "The theory of diffraction"β€” Presentation transcript:

1 The theory of diffraction
Playing with waves The theory of diffraction Saulius GraΕΎulis 2007

2 Scattering of waves (X-rays)
∣𝐀∣ = 2Ο€ Ξ» Ο‰= 2Ο€ 𝑇 𝐀′ 𝐀 𝐸= 𝐸 0 cos Ο‰π‘‘βˆ’π€π±βˆ’Ξ”Ο• When a flat wave hits charged particles, those start emitting spherical scattered waves.

3 Wave from the particle 2 lags with the phase difference 2rS.
Scattering of waves (2) 𝐀′ ΞΈ 𝐀 ΞΈ 𝐀 𝐫 π‘ž 𝑝 Wave from the particle 2 lags with the phase difference 2rS.

4 Sin waves can be represented as rotating vectors.
Addition of sin waves 20 -20 -15 -10 -5 5 10 15 20 Ο• Ο•=ω𝑑 -20 Sin waves can be represented as rotating vectors.

5 Addition of sin waves (2)
-30 -20 -10 10 20 30 20 ω𝑑 -20 A sum of sin waves is again a sin wave with the same frequency but with different amplitude and phase.

6 Adding many waves F Ο• 𝐹= ∣𝐹∣ 𝑒 𝑖ϕ Multiple sin waves add up, giving a sin wave with some new amplitude and some new phase

7 Single Isomorphous Replacement (SIR)
𝐹 𝑃 𝐹 𝐻1 𝐹 𝑃𝐻1

8 What happens during MIR
𝐹 𝑃𝐻2 𝐹 𝐻2 𝐹 𝑃 𝐹 𝐻1 𝐹 𝑃𝐻1

9 The real life... 𝐹 𝑃𝐻2 𝐹 𝐻2 𝐹 𝑃 𝐹 𝐻1 𝐹 𝑃𝐻1

10 Friedel's law 𝐀′ ΞΈ 𝐀 1 ΞΈ F 𝐀 𝐫 Ο• βˆ’Ο• π‘ž ΞΈ 𝑝 ΞΈ 2 𝐀′ Friedel 𝐀 Friedel A reflection with -S scattering vector will have the same amplitude but an opposite phase.

11 Anomalous scattering 𝑓 𝑛 𝑓 f 'a f ''a f a f a f ''a 𝑓 f 'a 𝑓 𝑛

12 Anomalous difference 𝑓 β€² β„Žπ‘˜π‘™ , 𝑓′ Λ‰ β„Ž Λ‰ π‘˜ Λ‰ 𝑙 Λ‰ 𝑓′ β€² β„Žπ‘˜π‘™ 𝑓′ β€² β„Žπ‘˜π‘™
𝑓 β€² β„Žπ‘˜π‘™ , 𝑓′ Λ‰ β„Ž Λ‰ π‘˜ Λ‰ 𝑙 Λ‰ 𝑓′ β€² β„Žπ‘˜π‘™ 𝑓′ β€² β„Žπ‘˜π‘™ 𝑓′ Λ‰ β€² β„Ž Λ‰ π‘˜ Λ‰ 𝑙 Λ‰ 𝑓 β€² β„Žπ‘˜π‘™ 𝐹 β„Žπ‘˜π‘™ 𝐹 β„Žπ‘˜π‘™ 𝐹 Λ‰ β„Ž Λ‰ π‘˜ Λ‰ 𝑙 Λ‰ 𝐹 β„Ž Λ‰ π‘˜ Λ‰ 𝑙 Λ‰ 𝑓′ β€² β„Ž Λ‰ π‘˜ Λ‰ 𝑙 Λ‰ 𝑓 β€² β„Ž Λ‰ π‘˜ Λ‰ 𝑙 Λ‰

13 Dependence of the anomalous signal from energy
-10 -8 -6 -4 -2 2 4 10000 12000 14000 16000 18000 20000 f'' f' Se E, Ev

14 Anomalous phasing (SAD)
𝐹 β„Žπ‘˜π‘™ 𝑓′ β€² β„Žπ‘˜π‘™ 𝑓′ Λ‰ β€² β„Ž Λ‰ π‘˜ Λ‰ 𝑙 Λ‰ 𝐹 β„Žπ‘˜π‘™ 𝑁 𝐹 Λ‰ β„Ž Λ‰ π‘˜ Λ‰ 𝑙 Λ‰

15 Crystals x a b y A crystal is a periodic array of molecules; its lattice is defined by three lattice vectors a, b and c.

16 Reflection from a tilted crystal
𝐒≠ πšΓ—πœ 𝑉 β„Ž;𝑆≠ β„Ž 𝑑 𝐀′ Δϕ=2Ο€π’πšπ‘› 𝐀 ΞΈ ΞΈ 𝐒 a 𝑑 b In a general orientation of a crystal, for every atom in a reflecting plane there is an equivalent atom that scatters out of phase

17 Reflection from a tilted plain
... 𝑛=3 𝑛=2 π’πšβˆ‰β„€ 𝑛=1 Ο• 𝑛=0 Ο•=2Ο€π’πšπ‘› Waves from the out-of-planes atoms cancel each other (Adapted from J. Drenth, β€œPrinciples of Protein X-ray Crystallography”)

18 Reflections from a crystal
𝐀′ 𝐒= π›Γ—πœ 𝑉 β„Ž= 𝐚 βˆ— β„Ž 𝐀 Δϕ=2Ο€π’πšπ‘› ΞΈ 𝐚 βˆ— = π›Γ—πœ 𝑉 ΞΈ 𝐒 𝐚 βˆ— a 𝑑= 𝑉 𝐴 𝑆= β„Ž 𝑑 b When a lattice plane coincides with the reflecting plane, all equivalent atoms scatter in phase.

19 Scattering from a crystal plane
π’πš=β„Ž;β„Žβˆˆβ„€ 𝑛=0 𝑛=1 𝑛=2 ... Ο•=2Ο€π’πšπ‘›=2Ο€β„Žπ‘›=2Ο€π‘š;π‘šβˆˆβ„€ Waves from such the in-phase scattering atoms add up to give an appreciable amplitude.

20 Example of sin wave addition
-10 -5 5 10 15 20 25 -3 -2 -1 1 2 3 -10 -5 5 10 15 20 25 -3 -2 -1 1 2 3 𝑛=1 𝑁 cos 2Ο€π’πšπ‘› 𝑛=1 𝑛=3 π’πš -10 -5 5 10 15 20 25 -3 -2 -1 1 2 3 -10 -5 5 10 15 20 25 -3 -2 -1 1 2 3 𝑛=10 𝑛=21 Only for integral values of Sa the waves add up to give an appreciable intensity.

21 Scattering from the crystal
𝐀′ 𝐀 𝐒 ΞΈ ΞΈ 𝐚 βˆ— 𝐚 βˆ— a 𝑑= 𝑉 𝑆 b 1) Laue conditions: 2) Bragg's law: βˆ£π’βˆ£ = 𝑛 𝑑 = 2sinΞΈ Ξ» π’πš=β„Ž;𝐒𝐛=π‘˜;π’πœ=𝑙 𝐒=β„Ž 𝐚 βˆ— +π‘˜ 𝐛 βˆ— +𝑙 𝐜 βˆ— 𝐒= π€βˆ’π€β€² 2 Ο€ To get a beam reflected from a crystal, Laue conditions must be satisfied for the chosen Bragg reflection

22 Ewald's construct diffracted beam Evald sphere
𝐒=β„Ž 𝐚 βˆ— +π‘˜ 𝐛 βˆ— +𝑙 𝐜 βˆ— 𝐀′ 2Ο€ 𝐛 βˆ— 𝐒 𝐀 2Ο€ 2ΞΈ 𝐚 βˆ— 1 Ξ» A scattered beam is reflected when a node of the reciprocal lattice lands on the Ewald sphere


Download ppt "The theory of diffraction"

Similar presentations


Ads by Google