Download presentation
Presentation is loading. Please wait.
1
The theory of diffraction
Playing with waves The theory of diffraction Saulius GraΕΎulis 2007
2
Scattering of waves (X-rays)
β£π€β£ = 2Ο Ξ» Ο= 2Ο π π€β² π€ πΈ= πΈ 0 cos Οπ‘βπ€π±βΞΟ When a flat wave hits charged particles, those start emitting spherical scattered waves.
3
Wave from the particle 2 lags with the phase difference 2ξrS.
Scattering of waves (2) π€β² ΞΈ π€ ΞΈ π€ π« π π Wave from the particle 2 lags with the phase difference 2ξrS.
4
Sin waves can be represented as rotating vectors.
Addition of sin waves 20 -20 -15 -10 -5 5 10 15 20 Ο Ο=Οπ‘ -20 Sin waves can be represented as rotating vectors.
5
Addition of sin waves (2)
-30 -20 -10 10 20 30 20 Οπ‘ -20 A sum of sin waves is again a sin wave with the same frequency but with different amplitude and phase.
6
Adding many waves F Ο πΉ= β£πΉβ£ π πΟ Multiple sin waves add up, giving a sin wave with some new amplitude and some new phase
7
Single Isomorphous Replacement (SIR)
πΉ π πΉ π»1 πΉ ππ»1
8
What happens during MIR
πΉ ππ»2 πΉ π»2 πΉ π πΉ π»1 πΉ ππ»1
9
The real life... πΉ ππ»2 πΉ π»2 πΉ π πΉ π»1 πΉ ππ»1
10
Friedel's law π€β² ΞΈ π€ 1 ΞΈ F π€ π« Ο βΟ π ΞΈ π ΞΈ 2 π€β² Friedel π€ Friedel A reflection with -S scattering vector will have the same amplitude but an opposite phase.
11
Anomalous scattering π π π f 'a f ''a f a f a f ''a π f 'a π π
12
Anomalous difference π β² βππ , πβ² Λ β Λ π Λ π Λ πβ² β² βππ πβ² β² βππ
π β² βππ , πβ² Λ β Λ π Λ π Λ πβ² β² βππ πβ² β² βππ πβ² Λ β² β Λ π Λ π Λ π β² βππ πΉ βππ πΉ βππ πΉ Λ β Λ π Λ π Λ πΉ β Λ π Λ π Λ πβ² β² β Λ π Λ π Λ π β² β Λ π Λ π Λ
13
Dependence of the anomalous signal from energy
-10 -8 -6 -4 -2 2 4 10000 12000 14000 16000 18000 20000 f'' f' Se E, Ev
14
Anomalous phasing (SAD)
πΉ βππ πβ² β² βππ πβ² Λ β² β Λ π Λ π Λ πΉ βππ π πΉ Λ β Λ π Λ π Λ
15
Crystals x a b y A crystal is a periodic array of molecules; its lattice is defined by three lattice vectors a, b and c.
16
Reflection from a tilted crystal
πβ πΓπ π β;πβ β π π€β² ΞΟ=2Οπππ π€ ΞΈ ΞΈ π a π b In a general orientation of a crystal, for every atom in a reflecting plane there is an equivalent atom that scatters out of phase
17
Reflection from a tilted plain
... π=3 π=2 ππββ€ π=1 Ο π=0 Ο=2Οπππ Waves from the out-of-planes atoms cancel each other (Adapted from J. Drenth, βPrinciples of Protein X-ray Crystallographyβ)
18
Reflections from a crystal
π€β² π= πΓπ π β= π β β π€ ΞΟ=2Οπππ ΞΈ π β = πΓπ π ΞΈ π π β a π= π π΄ π= β π b When a lattice plane coincides with the reflecting plane, all equivalent atoms scatter in phase.
19
Scattering from a crystal plane
ππ=β;βββ€ π=0 π=1 π=2 ... Ο=2Οπππ=2Οβπ=2Οπ;πββ€ Waves from such the in-phase scattering atoms add up to give an appreciable amplitude.
20
Example of sin wave addition
-10 -5 5 10 15 20 25 -3 -2 -1 1 2 3 -10 -5 5 10 15 20 25 -3 -2 -1 1 2 3 π=1 π cos 2Οπππ π=1 π=3 ππ -10 -5 5 10 15 20 25 -3 -2 -1 1 2 3 -10 -5 5 10 15 20 25 -3 -2 -1 1 2 3 π=10 π=21 Only for integral values of Sa the waves add up to give an appreciable intensity.
21
Scattering from the crystal
π€β² π€ π ΞΈ ΞΈ π β π β a π= π π b 1) Laue conditions: 2) Bragg's law: β£πβ£ = π π = 2sinΞΈ Ξ» ππ=β;ππ=π;ππ=π π=β π β +π π β +π π β π= π€βπ€β² 2 Ο To get a beam reflected from a crystal, Laue conditions must be satisfied for the chosen Bragg reflection
22
Ewald's construct diffracted beam Evald sphere
π=β π β +π π β +π π β π€β² 2Ο π β π π€ 2Ο 2ΞΈ π β 1 Ξ» A scattered beam is reflected when a node of the reciprocal lattice lands on the Ewald sphere
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.