Presentation is loading. Please wait.

Presentation is loading. Please wait.

Proposition 36 Raman choubay.

Similar presentations


Presentation on theme: "Proposition 36 Raman choubay."β€” Presentation transcript:

1 Proposition 36 Raman choubay

2 Proposition 36 If some point is taken outside a circle, and two straight-lines radiate from it towards the circle, and one of them cuts the circle, and the other touches it, then the rectangle contained by the whole straight-line cutting the circle, and the part of it cut off outside the circle, between the point and the convex circumference, will be equal to the square on the tangent line.

3 Proposition 36 Given: Point D have been taken outside circle ABC, And two straight-lines, DC[A] and DB, radiate from D towards circle ABC. And let DCA cut circle ABC, and BD touch it. TO PROVE: The rectangle contained by AD and DC is equal to the square on DB 𝑖.𝑒. 𝐴𝐷×𝐷𝐢= 𝐷𝐡 2

4 Case-1(CA through centre)
let F be the center of circle ABC let F B have been joined. Statements Reason ∠𝐹𝐡𝐷= 90 0 𝐴𝑠 𝐡𝐷 𝑖𝑠 π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ π‘Žπ‘›π‘‘ 𝐹 𝑖𝑠 π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘Ÿπ‘’ 𝐴𝑠 𝐹 𝑖𝑠 π‘‘β„Žπ‘’ π‘šπ‘–π‘‘ π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ 𝐴𝐢 π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ 𝐴𝐷 𝐴𝐷×𝐷𝐢+ 𝐹𝐢 2 = 𝐹𝐷 2 𝐴𝐷×𝐷𝐢+ 𝐹𝐡 2 = 𝐹𝐷 2 𝐹𝐢=𝐹𝐡 π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘™π‘’ 𝐡𝐷 2 + 𝐹𝐡 2 = 𝐹𝐷 2 𝐴𝑠 βˆ†πΉπ΅π· 𝑖𝑠 π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Žπ‘›π‘”π‘™π‘’ π‘‘π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’ 𝐡𝐷 2 + 𝐹𝐡 2 = 𝐴𝐷×𝐷𝐢+ 𝐹𝐡 2 πΉπ‘Ÿπ‘œπ‘š π‘Žπ‘π‘œπ‘£π‘’ π‘π‘œπ‘‘β„Ž π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›π‘  𝐡𝐷 2 = 𝐴𝐷×𝐷𝐢 π‘†π‘žπ‘’π‘Žπ‘Ÿπ‘’ π‘œπ‘“ 𝐹𝐡 π‘ π‘’π‘π‘‘π‘Žπ‘π‘‘π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒

5 Case-2 CD not through Centre
Let E be the centre of the circle let EF have been drawn from E, perpendicular to AC let EB, EC, and ED have been joined E F

6 Proof Statements Reason ∠𝐸𝐡𝐷= 90 0 𝐡𝐷 𝑖𝑠 π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝐴𝐹=𝐹𝐢 𝐸𝐹 βŠ₯𝐴𝐢
∠𝐸𝐡𝐷= 90 0 𝐡𝐷 𝑖𝑠 π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝐴𝐹=𝐹𝐢 𝐸𝐹 βŠ₯𝐴𝐢 𝐴𝐷 ×𝐷𝐢+ 𝐹𝐢 2 = 𝐹𝐷 2 𝐴𝐢 𝑖𝑠 π‘π‘Žπ‘Ÿπ‘‘ π‘œπ‘“ 𝐴𝐷 π‘Žπ‘›π‘‘ 𝐹 𝑖𝑠 π‘šπ‘–π‘‘ π‘π‘œπ‘–π‘›π‘‘ 𝐴𝐷 ×𝐷𝐢+ 𝐹𝐢 2 +𝐹𝐸 2 = 𝐹𝐸 2 + 𝐹𝐷 2 π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ π‘œπ‘“ 𝐸𝐹 π‘Žπ‘‘π‘‘π‘’π‘‘ π‘œπ‘› π‘π‘œπ‘‘β„Ž 𝑠𝑖𝑑𝑒 βˆ† 𝐸𝐷𝐹 π‘Žπ‘›π‘‘ βˆ† 𝐸𝐢𝐹 π‘π‘œπ‘‘β„Ž π‘Žπ‘Ÿπ‘’ π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Žπ‘›π‘”π‘™π‘’π‘‘ π‘ π‘œ 𝑏𝑦 𝑒𝑠𝑖𝑛𝑔 π‘ƒπ‘¦π‘‘β„Žπ‘Žπ‘”π‘œπ‘Ÿπ‘’π‘  π‘‘β„Žπ‘’. 𝐴𝐷 ×𝐷𝐢+ 𝐸𝐢 2 = 𝐸𝐷 2 𝐴𝐷 ×𝐷𝐢+ 𝐸𝐡 2 = 𝐸𝐷 2 𝐸𝐢=𝐸𝐡 π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’ 𝐡𝐷 2 + 𝐸𝐡 2 = 𝐸𝐷 2 βˆ† 𝐸𝐡𝐷 𝑖𝑠 π‘Ÿπ‘–π‘”β„Žπ‘‘ π‘Žπ‘›π‘”π‘™π‘’π‘‘ π‘ π‘œ 𝑏𝑦 π‘ƒπ‘¦π‘‘β„Ž. π‘‘β„Žπ‘’ 𝐴𝐷 ×𝐷𝐢= 𝐡𝐷 2 𝐡𝑦 π‘…π‘’π‘π‘™π‘Žπ‘π‘–π‘›π‘” π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝐸𝐷 QED


Download ppt "Proposition 36 Raman choubay."

Similar presentations


Ads by Google