Download presentation
Presentation is loading. Please wait.
1
Proposition 36 Raman choubay
2
Proposition 36 If some point is taken outside a circle, and two straight-lines radiate from it towards the circle, and one of them cuts the circle, and the other touches it, then the rectangle contained by the whole straight-line cutting the circle, and the part of it cut off outside the circle, between the point and the convex circumference, will be equal to the square on the tangent line.
3
Proposition 36 Given: Point D have been taken outside circle ABC, And two straight-lines, DC[A] and DB, radiate from D towards circle ABC. And let DCA cut circle ABC, and BD touch it. TO PROVE: The rectangle contained by AD and DC is equal to the square on DB π.π. π΄π·Γπ·πΆ= π·π΅ 2
4
Case-1(CA through centre)
let F be the center of circle ABC let F B have been joined. Statements Reason β πΉπ΅π·= 90 0 π΄π π΅π· ππ π‘ππππππ‘ πππ πΉ ππ π‘βπ ππππ‘ππ π΄π πΉ ππ π‘βπ πππ πππππ‘ ππ π΄πΆ ππππ‘ ππ π΄π· π΄π·Γπ·πΆ+ πΉπΆ 2 = πΉπ· 2 π΄π·Γπ·πΆ+ πΉπ΅ 2 = πΉπ· 2 πΉπΆ=πΉπ΅ πππππ’π ππ π‘βπ ππππππ π΅π· 2 + πΉπ΅ 2 = πΉπ· 2 π΄π βπΉπ΅π· ππ πππβπ‘ πππππ π‘πππππππ π΅π· 2 + πΉπ΅ 2 = π΄π·Γπ·πΆ+ πΉπ΅ 2 πΉπππ ππππ£π πππ‘β πππ’ππ‘ππππ π΅π· 2 = π΄π·Γπ·πΆ πππ’πππ ππ πΉπ΅ π π’ππ‘πππ‘ππ ππππ πππ‘β π πππ
5
Case-2 CD not through Centre
Let E be the centre of the circle let EF have been drawn from E, perpendicular to AC let EB, EC, and ED have been joined E F
6
Proof Statements Reason β πΈπ΅π·= 90 0 π΅π· ππ π‘ππππππ‘ π΄πΉ=πΉπΆ πΈπΉ β₯π΄πΆ
β πΈπ΅π·= 90 0 π΅π· ππ π‘ππππππ‘ π΄πΉ=πΉπΆ πΈπΉ β₯π΄πΆ π΄π· Γπ·πΆ+ πΉπΆ 2 = πΉπ· 2 π΄πΆ ππ ππππ‘ ππ π΄π· πππ πΉ ππ πππ πππππ‘ π΄π· Γπ·πΆ+ πΉπΆ 2 +πΉπΈ 2 = πΉπΈ 2 + πΉπ· 2 π ππ’πππ ππ πΈπΉ πππππ ππ πππ‘β π πππ β πΈπ·πΉ πππ β πΈπΆπΉ πππ‘β πππ πππβπ‘ ππππππ π π ππ¦ π’π πππ ππ¦π‘βπππππ’π π‘βπ. π΄π· Γπ·πΆ+ πΈπΆ 2 = πΈπ· 2 π΄π· Γπ·πΆ+ πΈπ΅ 2 = πΈπ· 2 πΈπΆ=πΈπ΅ πππππ’π ππ ππππππ π΅π· 2 + πΈπ΅ 2 = πΈπ· 2 β πΈπ΅π· ππ πππβπ‘ ππππππ π π ππ¦ ππ¦π‘β. π‘βπ π΄π· Γπ·πΆ= π΅π· 2 π΅π¦ π
ππππππππ π‘βπ π£πππ’π ππ πΈπ· QED
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.