Download presentation
Presentation is loading. Please wait.
1
Proposition 32 Raman choubay
2
Proposition 35 If some straight-line touches a circle, and some other straight-line is drawn across, from the point of contact into the circle, cutting the circle (in two), then those angles the (straight-line) makes with the tangent will be equal to the angles in the alternate segments of the circle.
3
Proposition 35 Given: let some straight-line EF touch the circle ABCD at the point B let some other straight-line BD have been drawn from point B into the circle ABCD cutting it in two TO PROVE: β πΉπ΅π·= β π΅π΄π· β πΈπ΅π·= β π·πΆπ΅
4
let AD, DC, and CB have been joined.
Construction let BA have been drawn from B, at right-angles to EF let AD, DC, and CB have been joined.
5
Proof Statements Reason π΅π΄ ππ π‘βπ ππππππ‘ππ πΈπ ππ π‘ππππππ‘ πππ π΄π΅ β₯πΈπΉ
β π΄π·π΅= 90 0 π΄ππππ ππ π πππβππππππ β π΄π΅π·+β π΅π΄π·= 90 0 π΄ππππ πππππππ‘π¦ ππ π‘πππππππ π΄π΅π· β π΄π΅πΉ=β π΄π΅π·+β π΅π΄π· π΄π πππππ π΄π΅πΉ ππ ππ¦ ππππ π‘ππ’ππ‘πππ β π΄π΅π·+β π·π΅πΉ=β π΄π΅π·+β π΅π΄π· π·ππ£πππππ πππππ π΄π΅πΉ πππ‘π ππππ‘π Angle ABD have been subtracted from both ππ β π·π΅πΉ=β π΅π΄π· Thus, the remaining angle DBF is equal to the angle BAD in the alternate segment of the circle. QED
6
Proof Statements Reason πΌπ ππ’πππππππ‘ππππ π΄π΅πΆπ·
ππ’π ππ πππππ ππ‘π ππππππ ππ ππ¦ππππ ππ’πππππππ‘πππππ β π΅πΆπ·+β π·π΄π΅= 180 0 ππ‘ππππβπ‘ πππππ β π΄π΅πΉ+β π΄π΅πΈ= 180 0 πΉπππ ππππ£π π‘π€π β π΅πΆπ·+β π·π΄π΅=β π΄π΅πΉ+β π΄π΅πΈ β π·π΅πΉ=β π΅π΄π· ππππ£ππ β π΅πΆπ·+β π·π΅πΉ=β π΄π΅πΉ+β π΄π΅πΈ π π’ππ‘ππππ‘πππ β π·π΅πΉ from both side β π΅πΆπ·=β π·π΅πΈ QED
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.