Presentation is loading. Please wait.

Presentation is loading. Please wait.

Proposition 32 Raman choubay.

Similar presentations


Presentation on theme: "Proposition 32 Raman choubay."β€” Presentation transcript:

1 Proposition 32 Raman choubay

2 Proposition 35 If some straight-line touches a circle, and some other straight-line is drawn across, from the point of contact into the circle, cutting the circle (in two), then those angles the (straight-line) makes with the tangent will be equal to the angles in the alternate segments of the circle.

3 Proposition 35 Given: let some straight-line EF touch the circle ABCD at the point B let some other straight-line BD have been drawn from point B into the circle ABCD cutting it in two TO PROVE: ∠ 𝐹𝐡𝐷= ∠ 𝐡𝐴𝐷 ∠ 𝐸𝐡𝐷= ∠ 𝐷𝐢𝐡

4 let AD, DC, and CB have been joined.
Construction let BA have been drawn from B, at right-angles to EF let AD, DC, and CB have been joined.

5 Proof Statements Reason 𝐡𝐴 𝑖𝑠 π‘‘β„Žπ‘’ π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘Ÿπ‘’ 𝐸𝑓 𝑖𝑠 π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ π‘Žπ‘›π‘“ 𝐴𝐡 βŠ₯𝐸𝐹
∠𝐴𝐷𝐡= 90 0 𝐴𝑛𝑔𝑙𝑒 𝑖𝑛 π‘ π‘’π‘šπ‘–βˆ’π‘π‘–π‘Ÿπ‘π‘™π‘’ ∠𝐴𝐡𝐷+∠𝐡𝐴𝐷= 90 0 𝐴𝑛𝑔𝑙𝑒 π‘π‘Ÿπ‘œπ‘π‘’π‘Ÿπ‘‘π‘¦ π‘œπ‘“ π‘‘π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’ 𝐴𝐡𝐷 ∠𝐴𝐡𝐹=∠𝐴𝐡𝐷+∠𝐡𝐴𝐷 𝐴𝑠 π‘Žπ‘›π‘”π‘™π‘’ 𝐴𝐡𝐹 𝑖𝑠 𝑏𝑦 π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘› ∠𝐴𝐡𝐷+∠𝐷𝐡𝐹=∠𝐴𝐡𝐷+∠𝐡𝐴𝐷 𝐷𝑖𝑣𝑖𝑑𝑖𝑛𝑔 π‘Žπ‘›π‘”π‘™π‘’ 𝐴𝐡𝐹 π‘–π‘›π‘‘π‘œ π‘π‘Žπ‘Ÿπ‘‘π‘  Angle ABD have been subtracted from both π‘†π‘œ ∠𝐷𝐡𝐹=∠𝐡𝐴𝐷 Thus, the remaining angle DBF is equal to the angle BAD in the alternate segment of the circle. QED

6 Proof Statements Reason 𝐼𝑛 π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘–π‘™π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘™ 𝐴𝐡𝐢𝐷
π‘†π‘’π‘š π‘œπ‘“ π‘œπ‘π‘π‘œπ‘ π‘–π‘‘π‘’ π‘Žπ‘›π‘”π‘™π‘’π‘  π‘œπ‘“ 𝑐𝑦𝑐𝑙𝑖𝑐 π‘„π‘’π‘Žπ‘‘π‘Ÿπ‘–π‘™π‘Žπ‘‘π‘’π‘Ÿπ‘Žπ‘™π‘  ∠𝐡𝐢𝐷+∠𝐷𝐴𝐡= 180 0 π‘†π‘‘π‘Ÿπ‘Žπ‘–π‘”β„Žπ‘‘ π‘Žπ‘›π‘”π‘™π‘’ ∠𝐴𝐡𝐹+∠𝐴𝐡𝐸= 180 0 πΉπ‘Ÿπ‘œπ‘š π‘Žπ‘π‘œπ‘£π‘’ π‘‘π‘€π‘œ ∠𝐡𝐢𝐷+∠𝐷𝐴𝐡=∠𝐴𝐡𝐹+∠𝐴𝐡𝐸 ∠𝐷𝐡𝐹=∠𝐡𝐴𝐷 π‘π‘Ÿπ‘œπ‘£π‘’π‘‘ ∠𝐡𝐢𝐷+∠𝐷𝐡𝐹=∠𝐴𝐡𝐹+∠𝐴𝐡𝐸 π‘ π‘’π‘π‘‘π‘Ÿπ‘Žπ‘π‘‘π‘–π‘›π‘” ∠𝐷𝐡𝐹 from both side ∠𝐡𝐢𝐷=∠𝐷𝐡𝐸 QED


Download ppt "Proposition 32 Raman choubay."

Similar presentations


Ads by Google