Download presentation
Presentation is loading. Please wait.
1
Vacuum Super String Field Theory
I.Ya. Aref'eva Steklov Mathematical Institute Super String Field Theory and Vacuum Super String Field Theory II SUMMER SCHOOL IN MODERN MATHEMATICAL PHYSICS September 1-12, Kopaonik, (SERBIA) YUGOSLAVIA
2
Why What How String Field Theory?
main motivations: gauge invariance principle behind string interactions non-perturbative phenomena What we can calculate in String Field Theory? (analog of Higgs and Goldstone Phenomena) Condensation of Tachyon Brane tensions Rolling Tachyon How we can do calculations in SFT? String Field Theory and Noncommutative Geometry String Field Theory and CFT
3
String Field Theory Second Quantized String Theory
Infinite number of local fields String Field A[X(σ)] - functional, or state in Fock space Local space-time fields Ghosts A[X(σ), c(σ), b (σ)] Example:
4
INTERACTION ? Associative Product of String Fields
Examples of associative multiplications: Pointwise multiplication of functions Multiplication of matrices Moyal product
5
Witten’s String Product
Associative Product of String Fields -- Coordinate representation
7
SFT Action Gauge transformations: E.Witten (1986) A - string field
- BRST charge, derivation of the star algebra - inner product - associative non-commutative product - open string coupling constant
8
SFT Action is given
9
Tachyon Condensation in SFT
Bosonic String - Tachyon Kostelecky,Samuel (1989)
10
Sen’s conjecture (1999) Vacuum Energy = Brane Tension Strings SFT
Branes
11
Sen’s conjectures (1999) = NO OPEN STRING EXCITATIONS
CLOSED STRING EXCITATIONS
12
Rolling Tachyon Motivations:cosmology,... Anharmonic oscillator
alpha’ corrections p-adic strings I.Volovich(1987); P.Frampton, Nishino(1988); Brekke,Freund,Witten(1988), I.A,B.Dragovic,I.Volovich(1988) Moeller, Zwiebach, hep-th/ p-adic and NC space-time I.A.,I.Volovich, 1990 SFT Sen, Strings2002 I.A, A.Giryavets, A.Koshelev
13
Rolling Tachyon Spatially homogeneous field configurations: E.O.M.
where
14
Rolling Tachyon Anharmonic oscillator approximation E.O.M.
15
Anharmonic oscillator
If resonance i.e.
16
Rolling Tachyon Two regimes: Initial condition near the top
Initial condition near the bottom
17
Rolling Tachyon (bosonic case)
Initial condition near the top Initial condition near the bottom
18
Alpha ‘ corrections (boson case)
First order Solutions
19
Rolling Tachyon E.O.M.
20
Rolling Tachyon E.O.M. X-dependence
21
Rolling Tachyon Two analogues: E.O.M. i) p-adic strings
ii) non-commutative solitons in strong coupling regime Gopakumar, Minwalla,Strominger
22
Rolling Tachyon Time evolution in the «sliver-tachyon» and p-adic strings p=2,3,5,.. (*) There is no solution such that with BUT this contradiction does not take place for (*) decreasing monotonically in time
23
Solutions to SFT E.O.M. Sen Problems!!! Analog of Yang-Feldman eq. --
+ + … Resonance = Sen Problems!!!
24
Tachyon Condensation in SSFT
OUTLOOK String Field Theory L.Bonora Noncommutative Field Theories and (Super) String Field Theories, hep-th/ , I.A., D. Belov, A.Giryavets, A.Koshelev,P.Medvedev SuperString Field Theory Cubic SSFT action 2-nd Tachyon Condensation in SSFT Rolling Tachyon 3-d Vacuum SuperString Field Theory i) New BRST charge ii) Special solutions - sliver, lump, etc.: algebraic; surface states; Moyal representation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.