Download presentation
Presentation is loading. Please wait.
1
Stacks
2
Stack A stack is a data structure that works on the principle of
Last In First Out (LIFO). So last item put on the stack is the first item that can be taken off, like a physical stack of books/plates. In stack new elements are added to and removed from the top of the structure.
3
Two Implementations of Stack
As Vector (Array) Storing the items contiguously . As List Storing items noncontiguously.
4
Operations of Stack IsEmpty: return true if stack is empty, return false otherwise IsFull: return true if stack is full, return false otherwise Top: return the element at the top of stack Push: add an element to the top of stack Pop: delete the element at the top of stack DisplayStack: print all the data in the stack
5
Array Implementation To use an array to implement a stack, you need both the array itself and an integer The integer tells you either: Which location is currently the top of the stack, or How many elements are in the stack for an empty stack, set ToS to -1
6
Push (1) Increment ToS by 1. (2) Set Stack[ToS] = X Pop (1) Set return value to Stack[ToS] (2) Decrement ToS by 1 These operations are performed in very fast constant time
7
How stack works 5 7 5 5 Empty stack push(5) push(7) pop() tos=1 tos=0
8
Create Stack Create an empty stack by setting Top of the stack to -1
{ TOS=-1; }
9
Push Stack void Push(int x); Push an element onto the stack
If the stack is full, print the error information. Note top always represents the index of the top element. First increment top, then push on to stack. Void push(int x) { if(isFull()) printf(" Stack overflow"); else TOS++; Stack[TOS]=x; }
10
Pop Stack int Pop() Pop means return the element at the top of the stack If the stack is empty, print the error information. Don’t forgot to decrement TOS. pop() { if (isEmpty()) printf( "Stack Underflow"); else return(Stack[TOS--]); }
11
Stack Top int Top(int Stack[]) Return the top element of the stack
Unlike Pop, this function does not remove the top element int Top(int Stack[ ]) { if (isEmpty()) { printf("\n Stack is empty"); return; } return Stack[TOS];
12
Printing all the elements
void DisplayStack() Print all the elements Void displayStack() { int i; printf("Top -->"); for(i=TOS;i>=0;i--) printf("\t \t%d \n" ,Stack[i]); }
13
Linked List Implementation
Advantage of the linked list : using only one pointer per item at a time. Disadvantage of contiguous vector implementation : using excess space equal to the number of vacant array items .
14
Linked List Implementation of Stack
The stack can be implemented as a linked list in which the top of the stack is represented by the first item in the list. topOfStack
15
Linked List Implementation of Stack
Each stack item stores element value pointer to next element
16
Node Structure of the Stack
typedef struct node{ int item; struct node *next; }Node; //Create Empty stack Node *Stack=NULL;
17
Push operation void Push(int x) { Node *top;
top=(Node *)malloc(sizeof(Node)); top->item=x; top->next=Stack; Stack=top; }
18
List Stack Example Stack 6 push(6); void Push(int x) { Node *top;
top=(Node *)malloc(sizeof(Node)); top->item=x; top->next=Stack; Stack=top; } Stack 6 top
19
List Stack Example push(6); push(1); Stack 1 6
20
List Stack Example push(6); push(1); push(7); 7 stack 1 6
21
List Stack Example push(6); push(1); push(7); push(8); 8 7 stack 1 6
22
Pop Stack //Pop from a stack int Pop(Node *Stack) {Node *temp; int i;
if (IsEmpty(Stack)) printf("Stack empty"); else { temp=Stack; i=temp->item; Stack=Stack->next; free(temp); return i; }
23
List Stack Example 8 7 stack 1 6 push(6); push(1); push(7); push(8);
pop(); 8 7 stack 1 6
24
List Stack Example 7 stack 1 6 push(6); push(1); push(7); push(8);
pop(); 7 stack 1 6
25
IsEmpty - to Check whether the stack is empty
int IsEmpty(Node *Stack) { if(Stack == NULL) return 1; }
26
Retrieve the Top element of the stack
int Top(Node *S) { if (!IsEmpty(S)) return (S->item); printf("Empty stack"); return 0; }
27
List Stack Example 8 7 stack 1 6 push(6); push(1); push(7); push(8);
Top() pop(); Top(); 8 7 stack 1 6 Top element retrieved is 8 Top element retrieved is 7
28
Display the stack void displayStack(Node *Stack) { Node *temp;
temp=Stack; printf("Top--->"); while(temp!=NULL) printf("\t\t%d\n",temp->item); temp=temp->next; }
29
Application of Stack Recognizing palindromes Checking balanced expressions Evaluating algebraic expressions is easier. Searching networks, traversing trees (keeping a track where we are).
30
Stack Applications Converting Decimal to Binary: Consider the following pseudocode Read (number) Loop (number > 0) 1) digit = number modulo 2 2) print (digit) 3) number = number / 2 // from Data Structures by Gilbert and Forouzan The problem with this code is that it will print the binary number backwards. (ex: 19 becomes instead of ) To remedy this problem, instead of printing the digit right away, we can push it onto the stack. Then after the number is done being converted, we pop the digit out of the stack and print it.
31
Simple Applications of the ADT Stack: Checking for Balanced Braces
A stack can be used to verify whether a program contains balanced braces An example of balanced braces abc{defg{ijk}{l{mn}}op}qr An example of unbalanced braces abc{def}}{ghij{kl}m abc{def}{ghij{kl}m
32
Checking for Balanced Braces
Requirements for balanced braces Each time you encounter a “}”, it matches an already encountered “{” When you reach the end of the string, you have matched each “{”
33
Checking for Balanced Braces
Figure 7-3 Traces of the algorithm that checks for balanced braces
34
Infix to Postfix Conversion
Scan the Infix string from left to right. Initialise an empty stack. If the scannned character is an operand, add it to the Postfix string. If the scanned character is an operator and if the stack is empty Push the character to stack. If the scanned character is an Operator and the stack is not empty, compare the precedence of the character with the element on top of the stack (topStack). If topStack has higher precedence over the scanned character Pop the stack else Push the scanned character to stack. Repeat this step as long as stack is not empty and topStack has precedence over the character. Repeat this step till all the characters are scanned. (After all characters are scanned, we have to add any character that the stack may have to the Postfix string.) If stack is not empty add topStack to Postfix string and Pop the stack. Repeat this step as long as stack is not empty. Return the Postfix string.
35
Example : String a+b*c-d
STACK PostfixString
36
Infix to Postfix Example
A + B * C - D / E Infix Stack(bot->top) Postfix a) A + B * C - D / E b) + B * C - D / E A c) B * C - D / E + A d) * C - D / E + A B e) C - D / E + * A B f) D / E + * A B C g) D / E - A B C * + h) / E - A B C * + D i) E - / A B C * + D j) / A B C * + D E k) A B C * + D E / -
37
Infix to Postfix Example #2
A * B - ( C + D ) + E Infix Stack(bot->top) Postfix A * B - ( C - D ) + E empty empty * B - ( C + D ) + E empty A B - ( C + D ) + E * A - ( C + D ) + E * A B - ( C + D ) + E empty A B * ( C + D ) + E - A B * C + D ) + E - ( A B * + D ) + E - ( A B * C D ) + E - ( + A B * C ) + E - ( + A B * C D + E - A B * C D + + E empty A B * C D + - E + A B * C D + - + A B * C D + - E empty A B * C D + - E +
38
Transform postfix to infix:
a)Push each operand in the stack until an operation is encountered. b)Pop two operands and wrap them around their operation. c) repeat until done. Transform Prefix to infix: Same as above, but we start parsing from right to left. Example: + B * C D
39
Evaluating Postfix Expressions
A postfix (reverse Polish logic) calculator Requires you to enter postfix expressions Example: * When an operand is entered, the calculator Pushes it onto a stack When an operator is entered, the calculator Applies it to the top two operands of the stack Pops the operands from the stack Pushes the result of the operation on the stack
40
Evaluating Postfix Expressions
Figure 7-8 The action of a postfix calculator when evaluating the expression 2 * (3 + 4)
41
Postfix Expression Evaluation
for each character C in a given string { if C is an operand push C onto stack; else // C is an operator pop item from stack, and store in Opr2; pop item from stack, and store in Opr1; result = Opr1 C Opr2, using C as an operator; push result onto stack; }
42
Application of Stacks – Contd..
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.