Presentation is loading. Please wait.

Presentation is loading. Please wait.

EE611 Deterministic Systems

Similar presentations


Presentation on theme: "EE611 Deterministic Systems"β€” Presentation transcript:

1 EE611 Deterministic Systems
Solutions of Linear Dynamical Equations Kevin D. Donohue Electrical and Computer Engineering University of Kentucky

2 Time-Domain Solution of LTI State Equation
Given a LTI state-space equation: Show the solution for the state can be expressed as: and output as: x 𝑑 =Ax 𝑑 +Bu 𝑑 y 𝑑 =Cx 𝑑 +Du 𝑑 x 𝑑 =exp A𝑑 x 𝑑 exp ξ‚žA π‘‘βˆ’Ο„ ξ‚Ÿ Bu Ο„ 𝑑τ y 𝑑 =Cexp A𝑑 x 0 +C 0 𝑑 exp ξ‚žA π‘‘βˆ’Ο„ ξ‚Ÿ Bu Ο„ 𝑑τ+Du 𝑑

3 Laplace-Domain Solution of LTI State Equation
Given a LTI state-space equation: Show the solution for the Laplace transform of the state can be expressed as: and output as: x 𝑑 =Ax 𝑑 +Bu 𝑑 y 𝑑 =Cx 𝑑 +Du 𝑑 x Λ† ξ‚žπ‘ ξ‚Ÿ = ξ‚žπ‘ Iβˆ’Aξ‚Ÿ βˆ’1 x ξ‚žπŸŽξ‚Ÿ + ξ‚žπ‘ Iβˆ’Aξ‚Ÿ βˆ’1 B u Λ† 𝑠 y Λ† ξ‚žπ‘ ξ‚Ÿ =C ξ‚žπ‘ Iβˆ’Aξ‚Ÿ βˆ’1 x ξ‚žπŸŽξ‚Ÿ + ξ‚žC ξ‚žπ‘ Iβˆ’Aξ‚Ÿ βˆ’1 B+Dξ‚Ÿ u Λ† 𝑠

4 Examples Find the unit step response to the following state-space equation for t ο‚³ 0: Show: x = βˆ’2 3 0 βˆ’1 x 𝑒 𝑑 withx 0 = βˆ’1 1 y= x x 𝑑 = βˆ’ 5 2 exp βˆ’2𝑑 1 for𝑑β‰₯0 𝑦 𝑑 = 1 2 ξ‚ž3βˆ’5exp βˆ’2𝑑 ξ‚Ÿ for𝑑β‰₯0

5 Discretization Consider sampling the inputs and outputs of a state-space equation with sampling interval T = 1/fs where fs is the sampling frequency. Show that the corresponding discrete system can be represented by: where k corresponds to t=kT and: x 𝑑 =Ax 𝑑 +Bu 𝑑 y 𝑑 =Cx 𝑑 +Du 𝑑 x π‘˜+1 = A 𝑑 x π‘˜ + B 𝑑 u π‘˜ y π‘˜ = C 𝑑 x π‘˜ + D 𝑑 u π‘˜ B 𝑑 = ξ‚ž 0 𝑇 exp AΟ„ π‘‘Ο„ξ‚Ÿ B A 𝑑 =exp A𝑇 C 𝑑 =C D 𝑑 =D

6 Solution of Discrete LTI State Equation
Given a discrete-time state equation: Show that the solution can be written as: x π‘˜+1 =Ax π‘˜ +Bu π‘˜ y π‘˜ =Cx π‘˜ +Du π‘˜ x π‘˜ = A π‘˜ x 0 + π‘š=0 π‘˜βˆ’1 A π‘˜βˆ’1βˆ’π‘š Bu π‘š y π‘˜ =C ξ‚ž A π‘˜ x 0 + π‘š=0 π‘˜βˆ’1 A π‘˜βˆ’1βˆ’π‘š Bu π‘š ξ‚Ÿ +Du π‘˜

7 Examples Find the solution to the following discrete-time state equation for k ο‚³ 0 and no input (zero input response): show: x π‘˜+1 = βˆ’ x π‘˜ 𝑒 𝑑 withx 0 = 0 βˆ’1 x π‘˜ = βˆ’ ξ‚ž ξ‚Ÿ π‘˜ sin .588π‘˜ βˆ’ ξ‚ž ξ‚Ÿ π‘˜ cos .588π‘˜ forπ‘˜β‰₯0

8 Equivalence Given an n by n nonsingular matrix P that represents a change of basis then the following systems are (algebraically) equivalent: where x Λ‰ =Px x Λ‰ 𝑑 = A Λ‰ x Λ‰ 𝑑 + B Λ‰ u 𝑑 x 𝑑 =Ax 𝑑 +Bu 𝑑 y 𝑑 = C Λ‰ x Λ‰ 𝑑 + D Λ‰ u 𝑑 y 𝑑 =Cx 𝑑 +Du 𝑑 A Λ‰ =PA P βˆ’1 B Λ‰ =PB C Λ‰ =C P βˆ’1 D Λ‰ =D

9 Zero-State Equivalence
State equations are zero-state equivalent iff they have the same transfer matrix: It can be shown that 2 LTI state equations are zero-state equivalent iff C ξ‚žπ‘ Iβˆ’Aξ‚Ÿ βˆ’1 B+D= C Λ‰ ξ‚žπ‘ Iβˆ’ A Λ‰ ξ‚Ÿ βˆ’1 B Λ‰ + D Λ‰ {A,B,C,D} { A Λ‰ , B Λ‰ , C Λ‰ , D Λ‰ } D= D Λ‰ C A 𝐦 B= C Λ‰ A Λ‰ 𝐦 B Λ‰ forπ‘š=0,1,2,...

10 Modal Form Complex Eigenvalues
Consider the following Jordan form A similarity transformation can be preformed to convert it to all real values in the following modal form: Ξ» Ξ± 1 +𝑗 Ξ² Ξ± 1 βˆ’π‘— Ξ² Ξ± 2 +𝑗 Ξ² Ξ± 2 βˆ’π‘— Ξ² 2 Ξ» Ξ± 1 Ξ² βˆ’ Ξ² 1 Ξ± Ξ± 2 Ξ² βˆ’ Ξ² 2 Ξ± 2

11 Modal Form Complex Eigenvalues
Given a matrix A with complex eigenvalues, it can be diagonalized with eigenvector Q, and then a matrix can be found to put in modal form. Example: Find similarity transformation to perform the form change: Show Q Λ‰ PAQ= A 𝐝𝐒𝐚𝐠𝐨𝐧𝐚π₯ P Λ‰ A 𝐝𝐒𝐚𝐠𝐨𝐧𝐚π₯ Q Λ‰ = A 𝐦𝐨𝐝𝐚π₯ P Λ‰ PAQ Q Λ‰ = A 𝐦𝐨𝐝𝐚π₯ Ξ± 1 +𝑗 Ξ² Ξ± 1 βˆ’π‘— Ξ² 1 Ξ± 1 Ξ² 1 βˆ’ Ξ² 1 Ξ± 1 P= 1 βˆ’π‘— 1 𝑗 Q= 𝑗 βˆ’π‘—

12 Modal Form Complex Eigenvalues
In general for any A with complex eigenvalues, can be found directly from the eigenvalues associated with where q1 and q2 are associated with a complex conjugate eigenvalues (note the eigenvector will also be complex conjugate pairs as well). Then Q Q Λ‰ Q Q= q 𝟏 , q 𝟐 ,..., q n Q Q Λ‰ = π‘πžπšπ₯ q 𝟏 ,𝐈𝐦𝐚𝐠 q 𝟐 ,..., q n

13 Lecture Note Homework U5.1
Find the solution y[k] for: given the system is relaxed at k = 0 and input is the unit impulse. x π‘˜+1 = 0.5 βˆ’ x π‘˜ u π‘˜ y π‘˜ = 𝟏 𝟎 x π‘˜


Download ppt "EE611 Deterministic Systems"

Similar presentations


Ads by Google